

Senior Design Project Progress Report

EE 493 Senior Design Project

Remote Soil Moisture Monitoring

By:

Chris Campbell
Josh Lyman

 Charlie Sterling

May 15, 2025

Faculty Advisor: Dr. Farid Farahmand, Sonoma State University
Client: Cali Pearce, Preserves Manager at the Center for Environmental Inquiry

Project Website: https://ssupreservedashboard.com

mailto:sterlingc@sonoma.edu
https://ssupreservedashboard.com

Remote Soil Moisture Monitoring

Acknowledgments

We would like to give special thanks to Dr. Farid Farahmand for the expertise he has
shared with us, as well as the continued guidance on this project. A thanks to Cali Pearce from
the Center for Environmental Inquiry for her assistance with accessing and navigating the
Fairfield Osborn Preserve. Thanks to Kerry Wininger for her help in securing funding for this
project. And a final thanks to the Norwick Memorial Fund for providing us with funds for this
project.

1

Remote Soil Moisture Monitoring

Abstract

In this project, we have designed and implemented a distributed system of devices that
are used to monitor soil moisture at remote locations on the Fairfield Osborn Preserve. This
system includes sensor devices that collect and transmit data, and includes a custom made
gateway for LoRa packet forwarding and data processing. From this gateway, the data is sent to
our custom website where it is visualized. The system has controllable parameters that users can
set and update through an online dashboard. The user is able to change the frequency of data
collection, the time data is uploaded to the online database, and monitor battery and connectivity
status of deployed nodes. Aggregated data can be downloaded from the website, allowing for
users to effectively get all of the data. The online database also includes location data for each
node, as input by the user. This system allows users to collect and view soil moisture data
without the need for manual data collection or the need for expensive alternatives.

2

Remote Soil Moisture Monitoring

Table of Contents

Abstract 2
Table of Contents 3
List of Figures 4
List of Tables 6
1. Problem Statement 7
2. Introduction 8
3. Previous Works 9
4. System Overview 11

4.1. Methodology 11
4.2. Requirements 11

Marketing Requirements 11
Engineering Requirements 12

4.3. Theory of Operation 14
5. Implementation 16

5.1. Overview 16
5.2. System Architecture 17
5.3. Alternative Design Matrix 21
5.4. Budget 23
5.5. Project Schedule 24

6. Tests Conducted 27
6.1. Summary of Test 27
6.2. Description of Tests 28
Function Tests 28

FT1 - LoRa 915 MHz Range Test 28
FT2 - Connect TTN server to our database and website 30
FT3 - Test web application for user interface 31
FT4 - Test communication from Gateway to Node 32
FT5 - Testing Device Enclosure 32
FT6 - Sensor Calibration 33
FT7 - Testing interruptions of Gateway service and testing LED status indicator 34
FT8 - Verifying reported ADC values align with measured 35

System Tests 36
ST1 - Testing Device communication with the Dashboard 36
ST2 - Parameter Changes for Nodes 38
ST3 - Power consumption and Battery life 38
ST4 - Full Autonomy Test 39

7. Ethics 40

3

Remote Soil Moisture Monitoring

8. Challenges 41
9. Conclusion 42
References 44
Appendix 45

List of Figures

Figure 1: LoRa Class A visualization Page 14

Figure 2: RF Link Power Budget Page 15

Figure 3: System Overview Page 17

Figure 4: The communication between the sensor node and gateway Page 17

Figure 5: The hardware block diagram of the nodes Page 18

Figure 6: Hardware diagram of the Gateway Page 19

Figure 7: The software design of the sensor nodes Page 19

Figure 8: The software design of the gateway Page 20

Figure 9: The software design of the Dashboard Page 20

Figure 10: Critical Path Chart Page 26

Figure 11: Setup For FT1 Page 29

Figure 12: Map of 4 points Page 29

Figure 13: Setup for FT2 Page 30

Figure 14: Received dummy data from the test device Page 31

Figure 15: Setup for FT3 Page 31

Figure 16: Setup for FT4 Page 32

Figure 17: The calibrated sensor and our sensors in the soil for testing Page 33

Figure 18: The graph of the reported values of the Tensiometer and the
200SS sensor

Page 34

4

Remote Soil Moisture Monitoring

Figure 19: The setup for FT7 Page 34

Figure 20: Setup for FT8 Page 35

Figure 21: Uncalibrated ADC measurements Page 36

Figure 22: Calibrated ADC measurements Page 36

Figure 23: Setup for ST1 Page 37

Figure 24: Analysis of missed communication Page 37

Figure 25: Setup for ST2 Page 38

Figure 26: The Setup for ST4 Page 39

Figure 27: Graphed data from autonomy test Page 39

Figure 28: Large map with all data points Page 45

Figure 29: Larger Version of water tension graph Page 47

Figure 30: Fast Drying Curve Page 48

Figure 31: Readings of water tension across 5 days Page 48

5

Remote Soil Moisture Monitoring

List of Tables

Table 1: Comparison of Wireless Communication Technologies Page 22

Table 2: Comparison of Microcontrollers Page 23

Table 3: Comparison of LoRa Gateways Page 23

Table 4: Parts list with prices and a short description Page 24

Table 5: Gantt Chart Page 25

Table 6: Summary of conducted tests. Page 27

Table 7: Values associated with the points on the map Page 30

Table 8: Analysis of sleep duration Page 38

Table 9: Values for all map data points Page 45

6

Remote Soil Moisture Monitoring

1. Problem Statement

The problem the Center for Environmental Inquiry is facing at the Fairfield

Osborn Preserve on the Sonoma Mountain is the lack of ability to measure data about the
preserve remotely. One such measurement that our client wished to conduct is a study on
how the presence of grazing cattle affects the soil in terms of its ability to hold water. If
the client wished to measure the amount of water it would require people to go out into
the preserve and measure each location individually and repeatedly over time. This is
completely impractical and thus limits the research that can be conducted on the preserve.

Our team has addressed this issue by creating a system on the preserve that allows
for remote sensors to be installed in isolated locations and aggregates the data into a
single location for the staff of the preserve. The sensors are measured by battery powered
microcontrollers inside waterproof enclosures that use LoRaWAN to communicate
wirelessly to a Raspberry Pi installed in the education center. The Pi acts as a LoRaWAN
gateway and facilitates the uploading of measurement data to a website our team created.
By using this website, preserve staff can view the data measured in aggregate and control
how frequently measurements are taken.

7

Remote Soil Moisture Monitoring

2. Introduction

For the Fairfield Osborn Preserve collecting accurate data at remote locations is
imperative for research. The issue with this is that collecting data from those remote
locations would require regular hikes off the trail, adding to the time commitments of
researchers and the overall cost of the project. Additionally there are no current sensors
on much of the preserve monitoring soil condition. The areas that data would be collected
from are remote and off-grid, meaning that any sensing or transmitting device would
have to be either self-sufficient with solar panels, or would have to be designed to last on
a battery for the duration of the data collection.

In this work our goal was to create a network of nodes that are capable of
measuring and transmitting data to a gateway through the forest cover and elevation
changes of the area. The system we implemented sends sensor data from the remote part
of the preserve to the Education Center with LoRa modulation and the LoRaWAN
technology. The collected data is then uploaded to a database we created and can be
visualized in graphs allowing for the users to see the data plotted across time.
Additionally we created and provided the clients with thorough documentation detailing
all levels of system design, installation, and maintenance.

In the next section we review some of the products that already exist that fulfil a
similar role to the system we created. These other implementations gave us great context
for what solutions may work and what solutions may be ineffective for us for our product
while we were in development.

8

Remote Soil Moisture Monitoring

3. Previous Works
While in the planning stage of our project’s development, we looked at existing

literature to examine what types of solutions to our problem already existed. This gave us
insight into where we should start development and what had already been tried and
failed. The system we created did not end up being a mesh network as described in the
articles we examined, though the details of the project remained similar. As a result of
this and the fact that the literature review was one of the first tasks we did for this project,
the views expressed are not necessarily the same as those held at time of the project’s
completion.

Similar systems to the one we are developing have been created in the past and
used to great effect. They provide an alternative to using traditional communication
infrastructure when doing so would be cost prohibitive or impossible and can
dramatically increase the amount of data that can be gathered by a group or individuals.
[3]

John Porter et al. discuss a very similar system they created in the paper “Wireless
Sensor Networks for Ecology.” In their paper, they address a desire for better research
access to a remote area in Taiwan that has a wealth of information about remote regions
that are much less impacted by human interference. As a necessary part of that however,
the area is difficult to access and measure, especially when the type of research being
conducted is on quickly occurring events, such as storms, or when data should be
collected faster than people can measure manually. Though the nature preserve we are
conducting research at is not as remote as the area studied in the paper, it poses the same
problem for data collection.

The solutions discussed in the paper are somewhat applicable to the application
we have as they are primarily focused on using serial interfacing or the Ethernet protocol
for communication between edge sensors and the location where data is aggregated for
study. Unlike with a remote location like that discussed in the paper, the location we are
working at has no need for on site data storage as there is a persistent internet connection
available at the preserve, it is just too far away from the location that is being studied for
WiFi to reach. Though the communication may not use the same physical infrastructure
as what was discussed in the paper, it gives a good idea of what issues to look out for as
we develop our infrastructure.

Pre-existing systems rely on a variety of network elements and organization
strategies to succeed, mainly determined by environmental and resource constraints.
Prabal Dutta breaks network elements down into three categories: root, mesh, and leaf
nodes. Root nodes, which connect the sensornet to external networks, are considered to
be resource-rich; they are typically wall powered always-on devices with 32-bit or even
64-bit processors and significant onboard storage. Mesh nodes deal with their own sensor
data as well as data sent from other nodes and are typically resource constrained and
operate on limited on-board energy sources, such as power from a battery or solar cell.
Leaf nodes are similar to mesh nodes in their power limitations and computing power, but
do not receive data from other nodes; instead, leaf nodes send collected data to nearby
mesh or root nodes.
 The location we are working with will most-likely require all three node types in
order to create a reliable mesh system. There is reliable access to wall power and WiFi
that would support a root node, but the specified area of study is well beyond the reach of

9

Remote Soil Moisture Monitoring

said WiFi network. Selectively placed mesh nodes could be spread out around the
surrounding location to receive and transmit data collected by leaf nodes (which would
house all the required sensors) back to the root node. Both the mesh and leaf nodes would
require some form of battery or solar power (or a combination of the two) as there is no
available power source within the data collection area.
 Multi-hop wireless mesh topology brings several benefits over a more common
star topology, including reliability, reach, and power efficiency. [2] Mesh networks are
able to route around anomalies that cause shadowing and reduce multipath fading by
offering multiple pathways through different peers (Dutta). This improves overall
performance in challenging RF environments such as heavily wooded forests, buildings,
and hilled areas.
Multi-hop mesh networks also bring benefits in power consumption, as multiple short
transmissions each require less power than a longer transmission.
 As we will be working in a heavily wooded environment with significant
elevation changes and no line of sight between our prospective root node and the farthest
mesh node, the possibility of transmitting data using mesh nodes over short distances to
avoid environmental blockers is a solid prospect, considering constructing a large enough
antenna to clear all obstacles would be difficult given the location and resources
available, and the monthly costs associated with LTE and other similar communication
systems would quickly add up given multiple devices.
 Once the data is collected and aggregated at the root node, the final step that must
be taken before giving access to the end user is the data processing level. Because the
system would be out in uncontrolled environments there could be issues with the integrity
of the data collected as a result of the weather or other natural phenomena. Because of
this, some manner of error prevention and correction in software is necessary. While
preventing data loss from errors in transmission can be done largely with methods such as
Hamming codes and data redundancy, there must be a method in place to account for if a
sensor stops reporting data correctly or ceases function entirely. A sensor that has become
damaged may still be able to send correctly formatted data but that does not mean that the
data itself is accurate to the real world input that is being measured. In a paper titled “The
Seawater Quality Monitoring and Data Inconsistency Processing System Based on a
Long-Range Sensor Network,” Hongji Xu et al. discuss software driven data analysis
methods that are used to reduce error in collected data. By utilizing a method similar to
those discussed in the paper we can make our system more robust and give end users an
easy way to determine if physical issues are interfering with the data that is gathered. [1]

10

Remote Soil Moisture Monitoring

4. System Overview

4.1. Methodology
The devices have solved the proposed problem by implementing a network of

nodes in a star topology around a gateway constructed out of a Raspberry Pi that is
installed in the education center on the preserve. The nodes collect sensor data that is
processed by an onboard microcontroller and then transmitted to the gateway using an
onboard LoRa module. The gateway then uploads the data to the The Things Network
server. The API on the server then allows us to download the data in a more usable form
to the Pi which can apply post-processing to the data and upload it to the database on the
website we have created.

We had originally planned to use a rechargeable battery and solar panels to power
the nodes but because of the locations they were installed in this solution was not
feasible. Instead, we used a single-use lithium thionyl chloride battery that was chosen to
give our nodes a lifespan of almost three years. The gateway is powered through a wall
adapter in the Education Center of the Fairfield Osborn Preserve and connected to the
Internet through their LAN.

Our team’s solution differs from the solutions listed above by using LoRa for
short range communication instead of costly LTE or more power demanding solutions
such as WiFi. The recurring cost for the end users will be minimal as the only expense is
the web server and database hosting both of which could be replaced by software on the
gateway Pi itself, though this option would limit the accessibility of the system to only
the LAN of the preserve.

4.2. Requirements

Marketing Requirements
System Overview

MR1. Node Support: The system must support a minimum of six Nodes.
MR2. Range: Nodes must operate within a 0.75-mile radius of the Gateway.
MR3. Autonomy: Nodes must function autonomously for three years under normal

operating conditions (sensor readings and broadcasts to the Gateway every 15
minutes).

MR4. Durability: The system must be resistant to water, dust, and potential damage
from animals.

Data Collection and Management

MR5. Data Collection Frequency: The data collection rate must be adjustable via the
user dashboard, up to a maximum frequency of once every 15 minutes.

11

Remote Soil Moisture Monitoring

MR6. Data Updates: The data upload rate must be adjustable via the user dashboard, up
to a maximum frequency of once per data point collected.

MR7. Data Reliability: Sensor data must be accurate and reliable.
MR8. Data Storage:

8.1. Sensor data must be temporarily stored on each Node in the event of
communication failure.

8.2. Aggregated data must be retained on the Gateway for as long as necessary.

User Interface and Dashboard

MR9. Accessibility: Users must have easy access to collected data through a
visualization dashboard

MR10. Battery Monitoring: Node battery status must be viewable via the dashboard.
MR11. Connection Monitoring: Node connection status must be displayed on the

dashboard.
MR12. Location Tracking: The location of each Node must be accessible through the

dashboard and must be able to be changed via the dashboard.

Deployment and Maintenance

MR13. Relocatable Nodes: Nodes must be designed to allow for relocation after initial
deployment.

MR14. Documentation: The system must include a user manual detailing the normal
operations of the system as well as how to maintain it in case of issues.

Engineering Requirements
System Overview

ER1. The system must allow communication between a minimum of six Nodes and the
Gateway and allow the addition of 4 more Nodes in the future. (MR1)

ER2. Communication must be reliable, with less than 10% packet loss when the Nodes
are installed at locations not exceeding 0.75 miles away from the Gateway in hilly
forested terrain such as that present on the Preserve. The LoRa signal must have a
SNR of greater than -20dB as that is the lowest signal level that can be decoded
by our Gateway. (MR2)

ER3. Nodes must be able to operate continuously for three years, given data collection
once every 15 minutes, data transmission once every 15 minutes, and with an
average battery consumption of no more than 2.5 mAh in a day of operation.
(MR3)

ER4. The Nodes must meet IP67 rating to survive weather conditions, and external
wires must be resistant to damage from animals through the use of shielding and
conduit. (MR4)

Data Collection and Management
ER5. The Nodes must sample data from their sensors autonomously at a frequency that

users can change remotely through the dashboard, up to a maximum frequency of
once every 15 minutes with a margin of +/- 1 minute. (MR5)

12

Remote Soil Moisture Monitoring

ER6. The system must autonomously upload data collected from the Nodes to a
publicly accessible dashboard website at a frequency (minimum once per day)
that users can change remotely through the dashboard. (MR6)

ER7. The moisture sensors used must be calibrated before installation, with a calibrated
range measuring water tension from 10 to 75 centibars. Error must not exceed +/-
6 CB, two times the max error of the reference device. (MR7)

ER8. If data sent to the Gateway is not acknowledged with a message back it must be
stored in nonvolatile memory on the Node to ensure it is not lost. (MR 7)

ER9. The data stored on the Node’s nonvolatile memory must be transmitted to the
Gateway when the connection is restored between them. (MR 8)

ER10. The data is aggregated by the Gateway and must be uploaded to a website hosting
the dashboard, in addition it must be saved locally to a removable storage medium
connected to the Gateway. (MR8)

ER11. Data stored on the removable storage device must be updated with data gathered
even if the connection with the website is lost. When the connection is
reestablished, it must be uploaded to the server. (MR8)

ER12. The communication between the Nodes and Gateway must be bidirectional to
allow for verification of data receipt and reconfiguration. (MR 6)

User Interface and Dashboard
ER13. The data collected from the sensors must be available to users as a graph on the

dashboard. The graphs must be able to show individual data from single Nodes as
well as aggregated data from all of them. (MR9)

ER14. The battery status of all of the Nodes must be available to users as graphs on the
dashboard to allow for monitoring of the battery level remotely. (MR10)

ER15. Battery status must be recorded with data collection from the sensors and be
transmitted to the Gateway at the scheduled times. (MR10)

ER16. The status of the connection between the Nodes and the Gateway must be
available to users of the dashboard. If data is not transmitted from a Node when it
was expected, the Node will be flagged as having been disconnected. (MR11)

ER17. The status of the connection between the Nodes and the Gateway must be
available to be monitored by users of the Dashboard, recording the last time a
message was received from each Node. (MR11)

ER18. The Nodes must be able to be shown at their location on a map to allow users to
easily tell which Node’s data corresponds to the location of the Nodes as they
were installed. (MR12)

Deployment and Maintenance
ER19. The location of each Node must be stored in the database of connected Nodes and

be able to be changed by users of the dashboard to allow for reuse of devices and
moving them while preserving the data. (MR13)

ER20. The Nodes must be able to be installed by users with minimal tools and
knowledge required to allow for easy reuse, movement, or expansion of the
system. (MR13)

ER21. The Nodes must be able to indicate to users installing them that they are
connected to the network without requiring users to look at the dashboard or any
other devices. (MR13)

13

Remote Soil Moisture Monitoring

ER22. The system must have documentation made available to users including
instructions on how to install Nodes, how to troubleshoot connection issues, and
how to use the dashboard to access and manipulate data. (MR14)

4.3. Theory of Operation
LoRa transmitters have three operation modes divided into classes, Class A, Class

B, and Class C. The three classes are separated by their signal receiving behavior, which
directly impacts the power efficiency of each class. Class A is the most power efficient,
as the node receiver only listens during two short windows after each of its own
transmissions, seen in Figure 1. This means nodes are only able to receive configuration
updates after a transmission. Class B has periodic RX windows that open up every 128
seconds; this requires synchronization between the gateway and the node in order to time
the RX windows and the broadcasts from the gateway. In Class C, the LoRa receiver is
constantly listening. This results in the most responsive communication with the node,
but also the most power consumption as the radio module never actually goes to sleep.

Figure 1: LoRa Class A visualization

The power consumed by the nodes varies greatly by what the node is doing at any
given time. For instance, the power used while broadcasting is much greater than that
used while receiving a signal. The total energy used in a given day can be determined by
determining the amount of time the node will be doing each activity and multiplying by
the power used for that activity. We determined the largest contributing factors to be the
energy used in transmission, receiving signals, measuring the sensors, the
microcontroller’s normal running power consumption, and the energy used while the
node is sleeping.

Using information from the datasheets of the various components, we were able
to calculate that the average power consumption of the microcontroller to be 80 μW, the
LoRa module to be 140 μW, the moisture sensors to be 37 μW, the temperature sensor to
be 18 μW, and the SD card module to be 1.5 μW. In total the average power consumption

14

Remote Soil Moisture Monitoring

of a node is 275 μW. This number does not include losses, something which we account
for by multiplying the final result by 1.5 to get an upper estimate of 413 μW average
power consumption.

 We selected a battery that is rated for 3.6 Amp-hours of current at a voltage 3.6 V.
Based on this capacity and the power requirements of the node, this should allow for a
total lifespan of three years when measuring data and transmitting it every fifteen
minutes.

Though the batteries selected will allow for a lifespan of three years with the
power consumption as we calculated, the batteries themselves are easy to replace for
users of the system. The batteries will use a standard two pole connector to allow for
quick replacement with another battery of the same type. The batteries are inside the
sealed enclosures of the nodes to protect them from the elements.

Figure 2: RF Link Power Budget

 Data loss could be a prevalent factor in the unreliability of the system as we were
unable to make the nodes store their own data locally. We had planned on using a
nonvolatile storage medium such as a MicroSD card to keep data until the nodes received
a confirmation message from the gateway though limitations with the microcontroller we
chose prevented us from implementing this feature. Similarly we had planned to have the
gateway store the data locally on an external storage device such as a USB drive but were

15

https://www.codecogs.com/eqnedit.php?latex=%20E_%7BDay%7D%3D%20E_%7BMicro%7D%20%2B%20E_%7BLoRa%7D%20%2B%20E_%7BSensors%7D%20%2B%20E_%7BSD%7D%20%5C%5C#0
https://www.codecogs.com/eqnedit.php?latex=%20E_%7BDay%7D%20%3D%202.845%20%5Ctext%7BmWh%7D%20%2B%205.0358%5Ctext%7BmWh%7D%20%2B%201.980%5Ctext%7BmWh%7D%20%2B%200.0528%20%5Ctext%7BmWh%7D%20%3D%206.609%20%5Ctext%7BmWh%7D%20%5C%5C%20#0
https://www.codecogs.com/eqnedit.php?latex=6.609%20%5Cfrac%7B%5Ctext%7BmWh%7D%7D%7B%5Ctext%7BDay%7D%7D%20*%20%5Cfrac%7B1%20%5Ctext%7B%20Day%7D%7D%7B24%20%5Ctext%7B%20Hours%7D%7D%20%3D%200.2754%20%5Ctext%7BmW%7D#0

Remote Soil Moisture Monitoring

unable to accomplish this because of the encryption that TTN uses for data. Both of these
challenges could be overcome by redesigning the relevant part of the system.
 The scalability of this project has limits. If nodes are placed outside of the
previously tested range then connection may not be possible with just a single gateway. It
may require retransmission nodes or another gateway closer to the new nodes. If more
devices are added the likelihood of device’s transmission colliding will increase greatly.
For the max amount of nodes you would take transmission times available divided by the
amount airtime multiplied by the amount of messages per hour or

. Additionally the addition of more sensors or 𝑁𝑜𝑑𝑒
𝑀𝐴𝑋

= 𝑇
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

/(𝑇
𝑎𝑖𝑟𝑡𝑖𝑚𝑒

* 𝑀)

more power intensive sensors would cause a necessity of a larger battery in order for the
node to remain powered for the specified time.

5. Implementation

5.1. Overview
 The system we are designing uses multiple modes of communication for multiple
purposes. The nodes use LoRaWAN to communicate with the gateway and the gateway
uses the Internet to communicate with the TTN server, a MQTT broker, and our server.
This combination of technologies allows for power efficient data transmission and
communication between all involved devices.

The LoRaWAN network is the heart of the system. The gateway is constructed
using a Raspberry Pi and an attached header board that acts as a LoRa signal aggregator
and transducer. The nodes use the LoRaWAN to communicate with the gateway and vice
versa, transmitting measurements to the gateway and configuration data back to the
nodes.

The gateway utilizes a Raspberry Pi image provided by TTN to take these LoRa
packets and upload them to the TTN website automatically. This is very convenient
though the TTN website is not suitable as a data storage service so further processing is
required. The gateway therefore uses the outgoing API that TTN provides to download
the data onto the Pi. The gateway then uploads the data to our private SQL database via a
PHP based API on our website.

Communication from the website to the gateway is done periodically at a rate of
once every five minutes. The gateway connects to the website as a way to let end users
know that the device is still running and at the same time it checks to see if the
configuration of the sleep duration for the nodes has changed. If the duration has changed
then the gateway will send a MQTT message to the TTN server to schedule the downlink
to the nodes to update this parameter. This is done in this manner because of limitations
in how TTN schedules downlinks and how our server host handles running code we
uploaded to it.

16

Remote Soil Moisture Monitoring

5.2. System Architecture
The system used in our project consists of three major components; the nodes, the

gateway, and the dashboard. The nodes and gateway have varied hardware and software
needs represented below in figure 3. The dashboard contains several parts, with each
component represented below with software diagrams. The nodes communicate with the
gateway, and the gateway communicates with the dashboard. The dashboard is also able
to control nodes through the gateway.

Figure 3: System Overview

Figure 4: The communication between the sensor node and gateway

17

Remote Soil Moisture Monitoring

The system has been deployed with the nodes communicating to the gateway via
LoRa, while the gateway uses WiFi to connect to the dashboard, shown in figure 4. The
nodes record their battery’s voltage, two measurements of the water tension of the soil
and a measurement of the temperature of the soil before sending the data to the gateway.

The sensors used on each node are two Irrometer 200SS Soil Moisture Sensors
and an Irrometer 200TS Soil Temperature Sensor. As reported by the datasheet, the
moisture sensors measure the pressure required to draw water from the soil in kPa of
vacuum and can be calibrated to ± 6kPa over the range from -10 to -75 kPa of vacuum.
The temperature sensor has a maximum temperature it can operate at of 150 °C and has a
maximum power rating of 30 mW at 25°C derated to 1 mW at 125°C. The accuracy of
the sensor is ± 0.2 °C in the range from -55 °C to the maximum operating temperature.

Figure 5: The hardware block diagram of the nodes

Using the LoRa RAK3172 module nodes communicate with the gateway through
an antenna. The nodes are powered by a Lithium Thionyl Chloride battery that is
regulated to the 3.3 V needed for the microcontroller. The moisture and temperature
sensors will be fed through the microcontroller’s 12-bit ADC, as well as the battery’s
voltage. Because the HTCC-AB01 microcontroller only has one analog input pin, we
designed a multiplexor circuit that is able to connect each of the sensors to the ADC pin.
All of the hardware components can be seen in figure 5.

18

Remote Soil Moisture Monitoring

Figure 6: Hardware diagram of the Gateway

The gateway is powered by a wall adapter, and communicates two ways. The

communication with the nodes is done through a LoRa Concentrator, which is interfaced
with the Pi through the GPIO pins. The gateway communicates to the dashboard through
the Raspberry Pi’s WiFi module and the existing internet connection present on the
preserve. The gateway’s design can be seen in figure 6

Figure 7: The software design of the sensor nodes

19

Remote Soil Moisture Monitoring

Figure 8: The software design of the gateway

 The gateway operates on two main threads, one to listen for LoRa packets from the nodes
and the other to interface with the dashboard website. Data from the nodes is processed through
the TTN server and then uploaded to our website’s database through an API. At the same time,
the gateway periodically connects to the dashboard website to verify to users that the system is
functioning and download the most recent sleep duration as set by the users. The flowchart can
be seen in figure 8.

Figure 9: The software design of the Dashboard

20

Remote Soil Moisture Monitoring

 The dashboard’s design, seen in figure 9, allows for the user to visualize collected

data, view the status of the system as a whole, update the duration that the nodes will
sleep for, and to edit the stored information regarding nodes and their placement. The
nodes are also plotted as points on a map of the preserve via the location that users input
when configuring the nodes in the installation process.

The status of the system is determined by comparing the last received
measurement from each node to what time the measurement should have come in at
given the current sleep duration. If a node has not uploaded data in longer than the period
between measurements should be, it is deemed as being disconnected from the system.
The data in each measurement is also analyzed and if any of the measurements are
outside the bounds of what the value should normally be it is marked as a potential error.
Users of the site can see which nodes have had either errors or low battery voltage
through the status page.

5.3. Alternative Design Matrix
Below are three Alternative Design Matrices explaining the selection criteria for

three components vital to the success of our project. In Table 1, we address the selection
criteria for the wireless communication technology to be used. We prioritized range, as
the deployment area for this system lacks line of sight and has dense tree cover. Cost was
another consideration, as our budget is limited and our clients requested that yearly
subscriptions be kept to a minimum, which makes LTE a difficult choice. Ultimately, it
was kept as a backup in the case our other options failed. Transfer speed and ease of use
were relatively minor considerations, as we are not using sensors that require large data
transfers and all three options pose their own unique challenges. Power consumption,
while extremely important for a battery-powered device, had to be balanced with the total
range of the technology and the required number of devices required to reach the network
found at the preserve’s Education Center. While BLE Nano had the lowest power
requirements, it also had the lowest range, requiring multiple devices to forward packets
0.75 miles to a gateway; this ultimately made it a less appealing choice.

In Table 2, we cover the criteria for selecting the microcontroller to be used in
each node. It should be noted that there were three design philosophies to choose from
when selecting a microcontroller: select a microcontroller with an integrated LoRa radio
module, select a microcontroller and pair it with a standalone LoRa radio module, such as
the SX1276, or select a microcontroller and pair it with a SoC LoRa radio module that
has its own built in microcontroller, such as the RAK3172 that is based on the
STM32WLE5. As for why we decided to go with the third option, combining a
STM32F401 microcontroller with a RAK3172, the decision goes beyond what is shown
in the design matrix. First, the cost of a standalone LoRa radio module (such as the
SX1276) combined with the need to create custom firmware to implement the LoRa stack
makes it less appealing than the RAK3172, which is almost the exact same price as a
stand alone radio module and has the capability of receiving AT and binary commands to
implement LoRaWAN, requiring no custom firmware. Second, while the STM32WLE5
in the RAK3172 is an excellent choice as a standalone microcontroller with built in LoRa
capabilities, its form factor is limited unless you design a full PCB around a bare
STM32WLE5 chip. This is mandatory to gain access to all the necessary peripherals of

21

Remote Soil Moisture Monitoring

the device, but also because development boards for the STM32WLE5 are significantly
more expensive than our other options. Even if we were intending on designing a PCB to
support a bare microcontroller chip, which is not easy to due considering our limited
time, the STM32WLE5 lacks the sheer number of peripherals and features supported by
the STM32F401; one of the most important being SDIO, which will be used to interface
an external SD card for long-term data storage. By combining the STM32F401 and the
STM32WLE5 found inside the RAK3172, we are achieving several things. First, the
process of collecting and processing data and sending/receiving LoRa signals is
separated, allowing for isolation between both the devices and code. Not only does this
allow for easier debugging during development and in the future, but it also allows the
firmware (or even hardware) related to the STM32F401 to be changed or upgraded
without having to worry about the LoRa component (as long as you can still send AT
commands). However, it was soon discovered that the STM32F401 developer boards we
purchased had significant parasitic current draw that would require significant board
modifications to remove. As a solution, we pivoted to the HTCC-AB01 microcontroller,
which offered low power consumption and an integrated radio module. As a tradeoff, it
only had a single ADC pin with no internal multiplexing, which is something we had to
deal with further down the line.

In Table 3, the criteria for selecting our LoRa gateway was much more cut and
dry. For cost, considering we only require a single gateway for this project, and all entry
level gateways cost a similar amount, the price of our selected gateway took minor
precedence over its other features. Power, while not normally a concern for a device
that’s going to be plugged into a wall outlet, is a slight concern for us as the preserve’s
Education Center is completely off grid, relying on solar power and batteries. That being
said, we needed a device that was easy to use, or at least familiar to us (which is the case
with the Raspberry Pi). Now, even though off the shelf gateways like the Dragino LG308
are relatively plug and play, they lack any form of (customizable) onboard computing,
which we intend on using to process and store sensor data, providing an additional layer
of data storage and processing beyond the nodes and database.

Table 1: Comparison of Wireless Communication Technologies
Raw Scores Weighted Scores

Criteria LoRaWAN BLE Nano LTE LoRaWAN BLE Nano LTE

Cost 4 2 1 0.364 0.222 0.125

Range 4
(10 km)

3
(0.1 km)

5
(20 km) 0.250 0.250 0.250

Power Consumption 2
(100 mA)

3
(20 mA)

2
(100 mA) 0.222 0.300 0.222

Transfer Speed 2
(27 kbps)

3
(2 Mbps)

5
(200 Mbps) 0.167 0.231 0.333

Ease of Use 3 2 2 0.300 0.222 0.222

Score 1.303 1.225 1.153

22

Remote Soil Moisture Monitoring

Table 2: Comparison of Microcontrollers

Raw Scores Weighted Scores

Criteria ESP32-C3 STM32F401
Cubecell

AB0
1

ESP32-C3 STM32F401
Cubecell

AB0
1

Cost 3 ($8) 4 ($6) 5 ($5) 0.250 0.333 0.417

Program Memory
4

(4000 KB)
3

(256 KB)
2

(128 KB) 0.444 0.333 0.222

Sleep Current 2
(5 uA)

5
(2.4 uA)

3
(2.5 uA) 0.200 0.500 0.300

ADC/IO 4 4 1 0.444 0.445 0.111

Ease of Use 4 3 3 0.400 0.300 0.300

Score 1.739 1.911 1.350

Table 3: Comparison of LoRa Gateways

Raw Scores Weighted Scores

Criteria Dragino LG308 Raspberry Pi Dragino LG308 Raspberry Pi

Cost 3 ($350) 3 ($200) 0.500 0.500

Power Usage 2 (12W) 3 (5W) 0.400 0.600

Computing 2 4 0.333 0.667

Ease of Use 5 2 0.714 0.286

Score 1.948 2.052

5.4. Budget
Our project was funded through a generous grant from the Norwick Memorial

Fund, giving us a budget of $2000 for the full implementation. In order to stay within this
budget, considerations were made when choosing sources for each component to develop
a working system for the lowest cost possible. Though there were other goals we had
wanted to reach beyond the requirements given to us by our client, the cost of the
required sensors precluded us from going beyond the required specifications.

23

Remote Soil Moisture Monitoring

Table 4: Parts list with prices and a short description

Item Part No. Purpose Manufacturer Supplier Price Quantity Ext. Price

Microcontroller HTCC-AB01
V2 Controller Heltech Amazon 15 6 90

LoRa
Concentrator RAK2287 Gateway RAKwireless RAKwireless 155 1 155

Single Board
Computer SC0193(9) Gateway Raspberry Pi RAKwireless 45 1 45

Various Parts Various
Resistors,
Connectors,
Wires, etc.

Various DigiKey 200 1 200

Web Hosting N/A Supporting
Backend Hostinger Hostinger 100 1 100

Main Battery LS17500
Main Power for
Node SAFT Amazon 16.39 12 196.68

UV Resin Fast Battery Holder Siraya Tech Amazon 27.74 3 83.22

Soil
Temperature
Sensor 200TS

Temperature
Compensation Irrometer

Forestry
Suppliers 40 6 240

PCB Custom
Interfacing
Node
Components

PCBWay PCBWay 6.35 10 63.5

IP67 Electrical
Box BG595935 Node

Enclosure Joinfworld Amazon 15.1 6 90.6

Antenna AOA-915-5A
CM

Improve Signal
Transmission ALFA Amazon 15 6 90

Soil Moisture
Sensor 200SS

Measure Soil
Moisture
Content

Irrometer Forestry
Suppliers 44.5 12 534

 Final Total: 1887.72

5.5. Project Schedule
While the project does have several critical steps that must be completed in order

and on time, there are several steps that can be completed in parallel. These steps include
working on the project report, slides, and poster. Additionally, these steps can be worked
on throughout the project, and are less impacted by other steps as they can be slowly built
upon as the rest of the project progresses.

24

Remote Soil Moisture Monitoring

Table 5: Gantt Chart

Gantt Chart not including Slack or Highlighted Critical Path

25

Remote Soil Moisture Monitoring

Figure 10: Critical Path Chart

26

Remote Soil Moisture Monitoring

6. Tests Conducted

6.1. Summary of Test
Below, we present a summary of tests that are conducted so far and those that are

planned for the future

Table 6: Summary of conducted tests.

Test Number Test Objective

Related ER Status Notes

FT-1 LoRa 915 MHz
Range Test

ER2 Completed Signal test under
worst-case
conditions
completed

FT-2 Connect TTN
server to our
database and
website

ER6 Completed

FT-3 Create web
application for
user interface

ER6 Completed Details will
change as project
progresses

FT-4 Test
communication
from Gateway
to Nodes

ER4 Completed Connect Node to
serial monitor and
print received data

FT-5 Testing Device
Enclosure

ER2 Completed Waterproof up to
40 inches of water
for 30 minutes

FT-6 Moisture
Sensor
Calibration
Test

ER7 Completed Water tension &
temperature
compensation

FT-7 Testing
interruptions of
Gateway
service and
testing LED
status indicator

ER21 Complete

27

Remote Soil Moisture Monitoring

FT-8 Verifying
reported ADC
values aligns
with measured

ER7 Complete

ST-1 Test Device
Comm. with
Web Server

ER4,ER6 Completed Must upload/
download with
minimal loss

ST-2 Parameter
Change for
Nodes

ER4 Completed Timestamps must
be accurate

ST-3 Power
Consumption
and Battery
Life

ER2 In-Progress Dependent on
frequency of data
collection
& transmission

ST-4 Full Autonomy
Test

ALL ER In-progress The Nodes are
installed and their
autonomous
behavior is being
recorded

6.2. Description of Tests

Function Tests

FT1 - LoRa 915 MHz Range Test
The purpose of this test was to verify that the gateway is able to receive data from

the nodes when installed in the client’s requested locations on site with no packet loss and
received signal to noise ratio of over -20 dB, which is the physical limit for LoRa.
We were able to successfully connect a LoRa device to the gateway installed in the
Education Center and send messages to it from various points along the trail running
through the Preserve.
 The setup, pictured in figure 11, involved a borrowed Dragino gateway, a cubcell
test device with a 3dBi antenna, and a mapping software used to see if data was received.
The test was conducted on the FOP at locations similar to our final locations where tree
cover is present.

28

Remote Soil Moisture Monitoring

Figure 11: Setup For FT1

 We tested 16 locations using this setup, and recorded the SNR and RSSI values
for these locations, map seen in figure 12 and the data in table 7. In the appendix is a map
of all locations and their corresponding values, and below is a smaller map and table with
more information, including the elevation and distance.

Figure 12: Map of 4 points

29

Remote Soil Moisture Monitoring

Table 7: Values associated with the points on the map
Node 1 2 3 4

Latitude 38.3506 38.3512 38.3514 38.3523

Longitude -122.587 -122.586 -122.586 -122.587

Elevation (Feet) 2066 2076 2091 2151

Distance from
Gateway (Miles)

0.651 0.725 0.727 0.745

RSSI (dB) -134 -113 -112 -117

SNR (dB) -15.5 -8 -7 0.5

The signal received was of higher SNR than the minimum required to pass the test

and prove LoRa as a viable system however it was still very low. We plan on doing
further testing in the future to ensure that this will not drop below the limit of what is
detectable by using either better antennas that lose less energy vertically or by using more
amplification.

FT2 - Connect TTN server to our database and website
The purpose of this test was to verify that the system can autonomously upload

data from nodes to our dashboard website. This was done using the Raspberry Pi
gateway, and a LoRa test device. The device communicated with TTN through the
gateway, then the data was sent from the Gateway to our database as seen in figure 13.

Figure 13: Setup for FT2

30

Remote Soil Moisture Monitoring

Figure 14: Received dummy data from the test device

The node was connected to the gateway as in the previous test and the gateway
was connected to the TTN servers. We were able to successfully connect our Raspberry
Pi and other devices to the TTN server with our API key and download the data to store it
locally. The received data picture in figure 14. This data was then uploaded to the
database we have created using the API we made for that purpose.

FT3 - Test web application for user interface
The purpose of this test was to verify that an end user of our control dashboard

can control system parameters through our website.
We created a dashboard website with access to APIs and user input scripts that

allowed users to input settings to have the server push to the gateway and then the nodes
from there. The script on the page creates a locally hosted JSON formatted file that would
then be downloaded by the gateway. The setup is visualized in figure 15.

Figure 15: Setup for FT3

The creation of the file from user inputs was a success. When this test was run,

our next steps moving forward from here were to attempt to make the MQTT
communication channel between the devices and to make the gateway device download
the data. We were unable to implement the MQTT protocol on the server as we had
wanted to but were able to get the gateway to download data from the server.

31

Remote Soil Moisture Monitoring

FT4 - Test communication from Gateway to Node
 The purpose of this test is to ensure that the configuration changes made by the
dashboard are seen at the nodes. We determined this by using a serial monitor attached to
a test device using the same HTCC-AB01 microcontroller we used in the nodes and
scheduling a downlink message through TTN directly via their downlink scheduler,
shown in figure 16.

Figure 16: Setup for FT4

FT5 - Testing Device Enclosure
 The purpose of this test is to ensure the enclosures are capable of withstanding
being outside in rainy and dusty conditions.
 The Node enclosures were sealed with absorbent material and weights inside.
Once sealed as they would be under normal operating conditions, the enclosures were
submerged under 40 inches of water for 30 minutes. Upon reaching 30 minutes of
submersion, the enclosures were removed from the water and inspected for any water
intrusion. Inspection was visual only; the absorbent material as well as the inside walls
and connectors of the Node were inspected for any presence of water.
 This test was a success; none of the nodes experienced any form of water
intrusion through either the main lid seal or the two bulkhead connectors. Each bulkhead
connector was sealed with an o-ring and a rubberized gasket maker on all of the exterior
threaded connections; disassembly of the node will require the cleaning and reapplication
of sealant on all threaded connections.

32

Remote Soil Moisture Monitoring

FT6 - Sensor Calibration
 The purpose of this test is to ensure the soil moisture sensor is within +/- ^ kPa
within a range of -10 to -75 kPa. The test also ensures that the temperature sensor is
within +/- 0.4℃ of calibrated thermometers. This test was conducted using the buried
sensors and known calibrated equipment. Using an IRROMETER Tensiometer, calibrated
for a range of 0 to -100 kPa, we tested our own IRROMETER 200SS sensor by having
both sensors placed in the same soil, seen in figure 17, with the same amount of water
within the soil. An image of the setup is below.

Figure 17: The calibrated sensor and our sensors in the soil for testing

Using this method we calibrated both the temperature and the soil
moisture sensor, these sensors communicated via LoRa to send the output data for
later graphing. As seen by the plot below the sensors were within our target
calibration range.

33

Remote Soil Moisture Monitoring

Figure 18: The graph of the reported values of the Tensiometer and the 200SS sensor

 Using the data from figure 18, we were able to confirm that the sensor was
functioning according to the specification on the data sheet, and that the values
were within our target range of values. More graphs and a larger version of the
above can be seen in the appendix.

FT7 - Testing interruptions of Gateway service and testing LED status indicator

The purpose of this test is to ensure that the node will continue functioning
correctly even if its connection to the gateway is temporarily lost, or if the connection to
TTN is interrupted that the nodes will function when connection is restored. This is
indicated by the status LED on the microcontroller. This test was completed by taking a
microcontroller with the correct node code, and seeing if an LED flash occurs at the
correct events or by seeing the serial output of the device.

34

Remote Soil Moisture Monitoring

Figure 19: The setup for FT7
The node operated as expected, each event triggered the corresponding LED

flash. Each event was repeated, and every repetition repeated the expected results. When
the connection to TTN or the gateway itself was interrupted the nodes functioned
correctly, continuing to keep their sleep duration constant and continued making
measurements.

FT8 - Verifying reported ADC values align with measured

The purpose of this test is to ensure that the 12-bit ADC on the AB-01
microcontroller is reading consistent values. In order to complete this test we used a
benchtop digital multimeter (DMM) to ensure that the value reported by the
microcontroller was accurate. This test was completed by using the benchtop DMM to
read the voltage across a voltage divider that was feeding into the ADC on the
microcontroller, while the ADC output was written to the serial monitor.

Figure 20: Setup for FT8

Conducting this test we found that the claimed reference voltage was actually 15

mV lower than what was stated on the data sheet. We then recompleted this test with a
calibrated reference voltage to see how the difference between reported and measured
changed, seen in figure 22. Both tables are below, and tables with all data points are in
the appendix.

35

Remote Soil Moisture Monitoring

Figure 21: Uncalibrated ADC measurements

Figure 22: Calibrated ADC measurements

This error can be calibrated out, if this test was repeated for each node deployed,
however we determined that this was not necessary as the difference in measured values
equals to 2 CB at maximum, which is within our accuracy range for the sensors.
Adjusting the reference voltage eliminates the error entirely, so if future students wished
they could calibrate each node for higher accuracy.

System Tests

ST1 - Testing Device communication with the Dashboard
 The purpose of this test is to ensure that the communication between deployed
nodes and the dashboard is reliable and accurate.

36

Remote Soil Moisture Monitoring

Figure 23: Setup for ST1

 We installed the nodes in their final locations on the preserve and connected them
to the gateway we had installed in the Education Center. From there we observed the
dashboard website and verified that data was being uploaded successfully. Shown in
figure 23. This test served as a full system test for uploading data and was a remarkable
success.

Figure 24: Analysis of missed communication

 By analyzing the timestamps of the received data from the website, we were able
to determine how many data points were missed compared to the number that we
expected to receive from each node, seen in figure 24. Our requirement for the project
was to drop no more than 10% of packets from any node and we satisfied the
requirement. The node that has the worst signal quality was determined to lose only
2.74% of the attempted transmissions over the week-long observation period of this test.

37

Remote Soil Moisture Monitoring

ST2 - Parameter Changes for Nodes
 The purpose of this test is to ensure that the updates from the dashboard are
changing the desired parameters on the nodes and that the sleep routine functions as
intended.

Figure 25: Setup for ST2

 We verified that the nodes could have their sleep duration changed via downlink
message with them installed on the fields in the process of our installation.

To verify the sleep duration is accurate to the value it should be, we downloaded
the aggregated data from the dashboard and analyzed the timestamps of it using
MATLAB. From this data we were able to determine that the sleep duration as set on the
nodes is within the one minute criteria we set out to achieve.

Table 8: Analysis of sleep duration

Node Time Delay (s) Standard Deviation (s)
1 913.5051 11.353
2 911.62 10.0817
3 910.8443 9.2475
4 909.0372 3.5475
5 915.7446 9.9674
6 913.8262 9.2558

ST3 - Power consumption and Battery life
 The purpose of this test is to ensure that the battery will last the estimated time.
This will be accomplished by measuring the average power consumption used in a day
and extrapolated from there.

38

Remote Soil Moisture Monitoring

ST4 - Full Autonomy Test
The purpose of this test is to put the whole system together and have it function

while on the FOP. This test verifies that the nodes can function autonomously for an
extended period of time when installed on the FOP, and verifies that the downlinks
function while the nodes are at their locations on the FOP.

Figure 26: The Setup for ST4

The deployed nodes are monitored based upon the data being visualized
on the website, and the status of nodes are monitored through its dedicated
webpage. Below is graphed data from 3 days of full autonomy, but the current
status of the test can be viewed from the link on the cover page.

Figure 27: Graphed data from autonomy test

This test is still ongoing, however the nodes have functioned properly for
the time they have been installed. The nodes were installed on the 19th of April,
2025. The downlink test was performed while the nodes were on the preserve, and
they have been successfully received by the nodes.

The gateway, also deployed on the preserve, has had some issues since its
deployment. Its connection to TTN has not been completely stable, likely due to
the fact that the WiFi on the preserve is heavily managed with no provided
workarounds or documentation as to the specific restrictions. The Raspberry Pi
has temporarily lost the ability to complete DNS lookups, causing the Pi to lose
connection to TTN’s servers, which use dynamic IP addresses. Connection to our
webpage has been constant, as it has a static IP address. This further confirms the

39

Remote Soil Moisture Monitoring

issue is DNS related. This issue is currently being addressed, and will require
further work during the summer by another student or team.

7. Ethics
Ethical design requires taking several factors into consideration during design.

The design of a system that does not exploit the people or the environment, as well as a
system that does not use manipulative tactics, respects data privacy, and a system that
allows for cooperative design.[4] Our system primarily must contend with the
environmental impact of our physical system, as well as data-privacy as users access the
online database.

The environmental concerns that are raised by this project are from the single-use
battery, from the physical degradation of the devices, and from soil disturbance on the
preserve. Single-use non-rechargeable batteries can raise environmental concerns, if not
recycled properly as they contain hazardous materials.[5] The manufacturing process to
make batteries can be highly toxic, and can leave behind a large environmental effect.

This project will allow for long term data collection of soil moisture on the
Fairfield Osborn Preserve, which would allow for continued knowledge about the soil
health. This data will help researchers understand the soil condition as a cattle grazing
study is conducted. The labor impact of our system would lower the necessity for the
researcher to hike out into the field in order to collect data.

When the battery used in our system is depleted it will require replacing with a
battery of similar specifications. This will require the user to hike to the locations of the
nodes and replace them, ensuring that the now dead battery is retrieved for proper
disposal. The batteries used in this project are non-rechargeable, and should be recycled
using a battery recycling program.

When the devices used in our project stop working the user will be able to know
the status using the dashboard, allowing for the user to then go out and retrieve the device
stopping it from continually degrading in the environment. The interface with the device
will require only a basic internet connection, and would be highly accessible for a
disabled person with a computer interface with accommodations for their disability.
Potential harm our devices could cause come from the nodes prematurely degrading,
releasing potentially toxic materials into the soil. The enclosure for the nodes will ensure
that the node does degrade in the weather conditions that are expected in the
environment.

40

Remote Soil Moisture Monitoring

8. Challenges

There were several challenges that had to be overcome for this project to succeed.
First and foremost was finding a cost-effective wireless communication method that
could transmit sensor data without transmission issues 0.75 miles with heavy tree cover,
elevation change, rolling hills, and little to no line of sight. Since cellular services were
not an option, per our client’s request, our only option was to use a wireless
communication method that is more cost effective than cellular transmitters, to relay
sensor data back to a preexisting WiFi source. The LoRa 915 MHz band is perfect for this
situation.

Though the communication method is a solved problem, we still had to power the
devices. Since wall power was not an option for any of the nodes, battery and solar power
were our only options. However, to keep costs down, we could not simply install an
oversized battery and solar panel for each device; this would increase costs significantly
and make potential future scaling difficult due to the overall cost of each device, not to
mention the increased installation difficulty. Additionally, some areas in the preserve
have heavy tree cover, limiting the amount of sun a panel would be exposed to. As a
result, we had to reduce the power consumption of each node through hibernation and
other power-saving methods, reducing the need for large batteries and solar panels.
Finally, the same environment that dictated the need for batteries and solar panels also
dictated the need for resilient housings for each node. The Fairfield Osborn Preserve,
while not the harshest environment, will still expose the sensor nodes to a multitude of
environmental hazards. These include rain, dust, mud, wildlife, UV radiation, and
varying temperatures. The housing containing all of the electronic devices that make up
each node must protect said components from damage during their deployment.

When beginning this project we anticipated encountering risks in the design
process that would require us to change our design. We were concerned that it was
possible that our selected microprocessor either lacked the required peripherals or
processing power to carry out its tasks, a concern that we mitigated by carefully selecting
our microcontrollers to exceed the requirements to allow for changes that came. We were
also very concerned about the ability of LoRa to transmit the data we required which led
us to conduct several tests of the wireless capabilities on site at the Preserve. Had we
encountered issues with the communication we could have mitigated them by using
directional antennas or amplifier circuits.

Additionally, we faced challenges implementing features originally planned for
the project; primarily local storage on the nodes and on the gateway. TTN was selected
early on in the project, as it was what was familiar to our team and as far as we knew
would be sufficient to complete the goals of our project. However, after time and
development we found that TTN does not support gateway retransmission, as any packets
TTN receive that are out of order or have any issue with their frame counter are simply
dropped. This meant that retransmission of locally stored data would be impossible to
implement without changing the LoRaWAN gateway software and management service
we were using. This could have been alleviated if ChirpStack had been implemented in
TTN’s stead, this however would also have drawbacks. Using TTN gives additional
benefits, such as our nodes being able to send data to TTN even when the nodes cannot
connect to our gateway. As TTN boasts interconnectivity, as long as the node can connect

41

Remote Soil Moisture Monitoring

to any LoRaWAN gateway registered to TTN it can send data. During our
implementation of this project, our own gateway was having difficulties connecting to
TTN, meaning that several of our nodes could not send data, but because the other nodes
could connect to another gateway we were still able to see data.

Furthermore, because retransmission was not possible on the gateway, it was not
implemented on the node. Because of this local data storage was not implemented on the
node. In order to implement node data storage a storage protocol, storage device, and
retransmission protocol would have been needed, all of which would have added
significant complexity to the nodes. To ensure that the data is not duplicated or lost,
implementing storage on the nodes also requires implementing an additional RTC module
to timestamp data as well as the physical interface for the MicroSD card. These
additional devices would require a redesign of the PCB and add a significant amount of
complexity.

Our team also had challenges with the server hosting on Hostinger, as we were
not able to implement all of the features we wanted on the website itself. Hostinger was
not able to accommodate our use of MQTT. Originally we had wanted the website to
send the MQTT message itself, however because MQTT is not a standard communication
method that is supported by browsers, we needed to use a python script to schedule and
send the MQTT requests. Hostinger allows for JavaScript to be run, but severely limits
what could be done with python, and we were unable to configure a JavaScript to
complete this task effectively. We are still unsure of the cause of this issue and future
work may be able to solve it. In order to circumvent this we used a MQTT broker to
schedule the messages. This issue with Hostinger also meant that we had to put the ‘push’
program, the program to push data from TTN to our website, on the Pi gateway, when
optimally it would be on a server. A future improvement of this project would be fixing
these issues by hosting our website on our own server, allowing for these programs to be
run and edited remotely, as well as, avoiding the need of more third party software.

9. Conclusion
The system we designed functions well enough to complete the goal we had set

out to meet. The system is able to remotely monitor soil moisture and report the
measurements to our website where it can be easily visualized. The nodes communicate
across the Fairfield Osborn Preserve to our gateway using LoRaWAN, and our gateway is
able to report that data to our website via WiFi. The implementation is not perfect, as
there were several features we wanted to implement but were unable to, and there are
several improvements that could be made to the project.

There were several areas in the project that could be improved upon in the future
to make the system more accessible to users. As discussed in the challenges section, we
were unable to meet some of the requirements we set out to achieve regarding the data
storage and retransmission on the nodes. This feature would have been very useful to
prevent data loss in the outages we have had from the gateway not connecting to the TTN
servers correctly and if we had known the full limitations of using TTN for decoding the
LoRaWAN packets we may have decided against using their service.

Similarly, we had trouble with the microcontrollers we used for the project with
our original choice not being viable for our application because of significantly higher

42

Remote Soil Moisture Monitoring

power consumption than the datasheet would suggest. Our original solution would have
had the available pins to simplify our PCB as well as interface with a microSD card for
local storage but because of the higher power consumption we were forced to change to a
different microcontroller.

Though we encountered these issues in our project, we were still able to deliver a
system to the Fairfield Osborn Preserve that can be used for the study they are currently
planning on conducting as well as expansion in the future for use in other ecological
studies.

43

Remote Soil Moisture Monitoring

References

[1] H. Xu, J. Feng, M. Ji, S. Fan, and W. Ji, “The seawater quality monitoring and data
inconsistency processing system based on a long-range sensor network,” Journal of
Coastal Research, vol. 105, no. sp1, Dec. 2020. doi:10.2112/jcr-si105-046.1

[2] P. Dutta and A. Dunkels, “Operating Systems and network protocols for Wireless
Sensor Networks,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 370, no. 1958, pp. 68–84, Jan. 2012.
doi:10.1098/rsta.2011.0330

[3] J. Porter et al., “Wireless Sensor Networks for Ecology,” OUP Academic,
https://academic.oup.com/bioscience/article-abstract/55/7/561/306750 (accessed Sep. 29,
2024).

[4] Sownie, C. The principles of ethical design (and how to use them) - 99designs.
Available at: https://99designs.com/blog/tips/ethical-design/ (Accessed: 16 December
2024).

[5] Lizin, S., Van Dael, M. and Van Passel, S. (2017) ‘Battery pack recycling: Behaviour
change interventions derived from an integrative theory of Planned Behaviour Study’,
Resources, Conservation and Recycling, 122, pp. 66–82.
doi:10.1016/j.resconrec.2017.02.003.

44

Remote Soil Moisture Monitoring

Appendix
FT-1 Additional data

Figure 28: Large map with all data points

Table 9: Values for all map data points
Point RSSI SNR

1 -21 9.8

2 -48 9

3 -60 10.2

4 -12 9.5

5 -17 10.8

6 -115 -1.2

7 -101 8.5

8 -116 -4.5

45

Remote Soil Moisture Monitoring

9 -134 -7.2

10 -124 -7.2

11 -120 -6.5

12 -113 -8

13 -112 -7

14 -113 -7.5

15 -110 2

16 -117 0.5

46

Remote Soil Moisture Monitoring

FT-7 Additional Data:

Figure 29: Larger Version of water tension graph

47

Remote Soil Moisture Monitoring

Figure 30: Fast Drying Curve

Figure 31: Readings of water tension across 5 days

48

Remote Soil Moisture Monitoring

FT-8 Additional data:

Uncalibrated Calibrated

MATLAB code used to analyze timestamp data
%% read data from file and select range
tableIn = readtable("data_export2.csv", 'DatetimeType', 'datetime');
data = tableIn(:,1:7);
data = sortrows(data, 'timestamp');

%cutoffTime = datetime('2025-04-13 12:00:00');
%data = data(data.timestamp >= cutoffTime, :);

subsetTables = cell(1,6);

for i = 1:6
 subsetTables{i} = data(data{:,2} == i, :);
end

Node1Data = subsetTables{1};

49

Remote Soil Moisture Monitoring

Node2Data = subsetTables{2};
Node3Data = subsetTables{3};
Node4Data = subsetTables{4};
Node5Data = subsetTables{5};
Node6Data = subsetTables{6};

Node1Delta = diff(Node1Data.timestamp);
Node2Delta = diff(Node2Data.timestamp);
Node3Delta = diff(Node3Data.timestamp);
Node4Delta = diff(Node4Data.timestamp);
Node5Delta = diff(Node5Data.timestamp);
Node6Delta = diff(Node6Data.timestamp);

%% calculate the percentage of missed values
missedData1 = sum(Node1Delta > minutes(16));
missedData2 = sum(Node2Delta > minutes(16));
missedData3 = sum(Node3Delta > minutes(16));
missedData4 = sum(Node4Delta > minutes(16));
missedData5 = sum(Node5Delta > minutes(16));
missedData6 = sum(Node6Delta > minutes(16));

%technically wrong because it undercounts by the number of misses.
%Ignoring this
loss1 = missedData1 / height(Node1Data);
loss2 = missedData2 / height(Node2Data);
loss3 = missedData3 / height(Node3Data);
loss4 = missedData4 / height(Node4Data);
loss5 = missedData5 / height(Node5Data);
loss6 = missedData6 / height(Node6Data);

%% Plot figures for timestamp differences

figure(1)
Node1Timestamp = Node1Data.timestamp;
Node1Delta = diff(Node1Timestamp);
plot(Node1Timestamp(2:end), minutes(Node1Delta))
title("Difference in measurement timestamps")
xlabel("time received")
ylabel("time since last value")

figure(2)
Node2Timestamp = Node2Data.timestamp;
Node2Delta = diff(Node2Timestamp);
plot(Node2Timestamp(2:end), minutes(Node2Delta))
title("Difference in measurement timestamps")
xlabel("time received")
ylabel("time since last value")

figure(3)
Node3Timestamp = Node3Data.timestamp;
Node3Delta = diff(Node3Timestamp);
plot(Node3Timestamp(2:end), minutes(Node3Delta))
title("Difference in measurement timestamps")
xlabel("time received")
ylabel("time since last value")

50

Remote Soil Moisture Monitoring

figure(4)
Node4Timestamp = Node4Data.timestamp;
Node4Delta = diff(Node4Timestamp);
plot(Node4Timestamp(2:end), minutes(Node4Delta))
title("Difference in measurement timestamps")
xlabel("time received")
ylabel("time since last value")

figure(5)
Node5Timestamp = Node5Data.timestamp;
Node5Delta = diff(Node5Timestamp);
plot(Node5Timestamp(2:end), minutes(Node5Delta))
title("Difference in measurement timestamps")
xlabel("time received")
ylabel("time since last value")

figure(6)
Node6Timestamp = Node6Data.timestamp;
Node6Delta = diff(Node6Timestamp);
plot(Node6Timestamp(2:end), minutes(Node6Delta))
title("Difference in measurement timestamps")
xlabel("time received")
ylabel("time since last value")

%% find mean and std dev of timestamp differences

% Calculate time differences in seconds
dtSeconds1 = seconds(Node1Delta); % Convert to seconds
dtSeconds2 = seconds(Node2Delta);
dtSeconds3 = seconds(Node3Delta);
dtSeconds4 = seconds(Node4Delta);
dtSeconds5 = seconds(Node5Delta);
dtSeconds6 = seconds(Node6Delta);

% Filter for time differences between 14 and 16 minutes (now in seconds)
Node1TimestampsFiltered = dtSeconds1(dtSeconds1 >= 14 * 60 & dtSeconds1
< 16 * 60);
Node2TimestampsFiltered = dtSeconds2(dtSeconds2 >= 14 * 60 & dtSeconds2
< 16 * 60);
Node3TimestampsFiltered = dtSeconds3(dtSeconds3 >= 14 * 60 & dtSeconds3
< 16 * 60);
Node4TimestampsFiltered = dtSeconds4(dtSeconds4 >= 14 * 60 & dtSeconds4
< 16 * 60);
Node5TimestampsFiltered = dtSeconds5(dtSeconds5 >= 14 * 60 & dtSeconds5
< 16 * 60);
Node6TimestampsFiltered = dtSeconds6(dtSeconds6 >= 14 * 60 & dtSeconds6
< 16 * 60);

% Calculate average and standard deviation in seconds
avgDelta1 = mean(Node1TimestampsFiltered);
stdDev1 = std(Node1TimestampsFiltered);
avgDelta2 = mean(Node2TimestampsFiltered);
stdDev2 = std(Node2TimestampsFiltered);
avgDelta3 = mean(Node3TimestampsFiltered);
stdDev3 = std(Node3TimestampsFiltered);
avgDelta4 = mean(Node4TimestampsFiltered);

51

Remote Soil Moisture Monitoring

stdDev4 = std(Node4TimestampsFiltered);
avgDelta5 = mean(Node5TimestampsFiltered);
stdDev5 = std(Node5TimestampsFiltered);
avgDelta6 = mean(Node6TimestampsFiltered);
stdDev6 = std(Node6TimestampsFiltered);

% Optionally, display results in seconds
fprintf('Node 1: Avg = %.2f seconds, Std Dev = %.2f seconds\n',
avgDelta1, stdDev1);
fprintf('Node 2: Avg = %.2f seconds, Std Dev = %.2f seconds\n',
avgDelta2, stdDev2);
fprintf('Node 3: Avg = %.2f seconds, Std Dev = %.2f seconds\n',
avgDelta3, stdDev3);
fprintf('Node 4: Avg = %.2f seconds, Std Dev = %.2f seconds\n',
avgDelta4, stdDev4);
fprintf('Node 5: Avg = %.2f seconds, Std Dev = %.2f seconds\n',
avgDelta5, stdDev5);
fprintf('Node 6: Avg = %.2f seconds, Std Dev = %.2f seconds\n',
avgDelta6, stdDev6);

%% Make Table
% Create vectors for the table
Node = (1:6)';
AvgTime = [avgDelta1; avgDelta2; avgDelta3; avgDelta4; avgDelta5;
avgDelta6];
StdDevTime = [stdDev1; stdDev2; stdDev3; stdDev4; stdDev5; stdDev6];

% Create the table
timeStatsTable = table(Node, AvgTime, StdDevTime);

% Display the table
disp(timeStatsTable);

writetable(timeStatsTable, 'timeStats.xlsx');
fprintf('Table written to "timeStats.xlsx"\n');

52

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1.Problem Statement
	2.Introduction
	
	3.Previous Works
	4.System Overview
	4.1.Methodology
	4.2.Requirements
	Marketing Requirements
	Engineering Requirements

	4.3.Theory of Operation

	5.Implementation
	5.1.Overview
	
	5.2.System Architecture
	5.3.Alternative Design Matrix
	5.4.Budget
	5.5.Project Schedule

	6.Tests Conducted
	6.1.Summary of Test
	6.2.Description of Tests
	Function Tests
	FT1 - LoRa 915 MHz Range Test
	FT2 - Connect TTN server to our database and website
	FT3 - Test web application for user interface
	FT4 - Test communication from Gateway to Node
	FT5 - Testing Device Enclosure
	FT6 - Sensor Calibration
	FT7 - Testing interruptions of Gateway service and testing LED status indicator
	FT8 - Verifying reported ADC values align with measured

	System Tests
	ST1 - Testing Device communication with the Dashboard
	ST2 - Parameter Changes for Nodes
	ST3 - Power consumption and Battery life
	ST4 - Full Autonomy Test

	7.Ethics
	
	8.Challenges
	9.Conclusion
	
	References
	Appendix

