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Abstract 
 

In this project, we have designed and implemented a distributed system of devices that 
are used to monitor soil moisture at remote locations on the Fairfield Osborn Preserve. This 
system includes sensor devices that collect and transmit data, and includes a custom made 
gateway for LoRa packet forwarding and data processing. From this gateway, the data is sent to 
our custom website where it is visualized. The system has controllable parameters that users can 
set and update through an online dashboard. The user is able to change the frequency of data 
collection, the time data is uploaded to the online database, and monitor battery and connectivity 
status of deployed nodes. Aggregated data can be downloaded from the website, allowing for 
users to effectively get all of the data. The online database also includes location data for each 
node, as input by the user. This system allows users to collect and view soil moisture data 
without the need for manual data collection or the need for expensive alternatives.  
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1. Problem Statement  
 
The problem the Center for Environmental Inquiry is facing at the Fairfield 

Osborn Preserve on the Sonoma Mountain is the lack of ability to measure data about the 
preserve remotely. One such measurement that our client wished to conduct is a study on 
how the presence of grazing cattle affects the soil in terms of its ability to hold water. If 
the client wished to measure the amount of water it would require people to go out into 
the preserve and measure each location individually and repeatedly over time. This is 
completely impractical and thus limits the research that can be conducted on the preserve. 

Our team has addressed this issue by creating a system on the preserve that allows 
for remote sensors to be installed in isolated locations and aggregates the data into a 
single location for the staff of the preserve. The sensors are measured by battery powered 
microcontrollers inside waterproof enclosures that use LoRaWAN to communicate 
wirelessly to a Raspberry Pi installed in the education center. The Pi acts as a LoRaWAN 
gateway and facilitates the uploading of measurement data to a website our team created. 
By using this website, preserve staff can view the data measured in aggregate and control 
how frequently measurements are taken.  

7 



Remote Soil Moisture Monitoring 

2. Introduction  
 

For the Fairfield Osborn Preserve collecting accurate data at remote locations is 
imperative for research. The issue with this is that collecting data from those remote 
locations would require regular hikes off the trail, adding to the time commitments of 
researchers and the overall cost of the project. Additionally there are no current sensors 
on much of the preserve monitoring soil condition. The areas that data would be collected 
from are remote and off-grid, meaning that any sensing or transmitting device would 
have to be either self-sufficient with solar panels, or would have to be designed to last on 
a battery for the duration of the data collection.  

In this work our goal was to create a network of nodes that are capable of 
measuring and transmitting data to a gateway through the forest cover and elevation 
changes of the area. The system we implemented sends sensor data from the remote part 
of the preserve to the Education Center with LoRa modulation and the LoRaWAN 
technology. The collected data is then uploaded to a database we created and can be 
visualized in graphs allowing for the users to see the data plotted across time. 
Additionally we created and provided the clients with thorough documentation detailing 
all levels of system design, installation, and maintenance.  

In the next section we review some of the products that already exist that fulfil a 
similar role to the system we created. These other implementations gave us great context 
for what solutions may work and what solutions may be ineffective for us for our product 
while we were in development. 
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3. Previous Works  
While in the planning stage of our project’s development, we looked at existing 

literature to examine what types of solutions to our problem already existed. This gave us 
insight into where we should start development and what had already been tried and 
failed. The system we created did not end up being a mesh network as described in the 
articles we examined, though the details of the project remained similar. As a result of 
this and the fact that the literature review was one of the first tasks we did for this project, 
the views expressed are not necessarily the same as those held at time of the project’s 
completion. 

Similar systems to the one we are developing have been created in the past and 
used to great effect. They provide an alternative to using traditional communication 
infrastructure when doing so would be cost prohibitive or impossible and can 
dramatically increase the amount of data that can be gathered by a group or individuals. 
[3] 

John Porter et al. discuss a very similar system they created in the paper “Wireless 
Sensor Networks for Ecology.” In their paper, they address a desire for better research 
access to a remote area in Taiwan that has a wealth of information about remote regions 
that are much less impacted by human interference. As a necessary part of that however, 
the area is difficult to access and measure, especially when the type of research being 
conducted is on quickly occurring events, such as storms, or when data should be 
collected faster than people can measure manually. Though the nature preserve we are 
conducting research at is not as remote as the area studied in the paper, it poses the same 
problem for data collection.  

The solutions discussed in the paper are somewhat applicable to the application 
we have as they are primarily focused on using serial interfacing or the Ethernet protocol 
for communication between edge sensors and the location where data is aggregated for 
study. Unlike with a remote location like that discussed in the paper, the location we are 
working at has no need for on site data storage as there is a persistent internet connection 
available at the preserve, it is just too far away from the location that is being studied for 
WiFi to reach. Though the communication may not use the same physical infrastructure 
as what was discussed in the paper, it gives a good idea of what issues to look out for as 
we develop our infrastructure. 

Pre-existing systems rely on a variety of network elements and organization 
strategies to succeed, mainly determined by environmental and resource constraints. 
Prabal Dutta breaks network elements down into three categories: root, mesh, and leaf 
nodes. Root nodes, which connect the sensornet to external networks, are considered to 
be resource-rich; they are typically wall powered always-on devices with 32-bit or even 
64-bit processors and significant onboard storage. Mesh nodes deal with their own sensor 
data as well as data sent from other nodes and are typically resource constrained and 
operate on limited on-board energy sources, such as power from a battery or solar cell. 
Leaf nodes are similar to mesh nodes in their power limitations and computing power, but 
do not receive data from other nodes; instead, leaf nodes send collected data to nearby 
mesh or root nodes. 
 The location we are working with will most-likely require all three node types in 
order to create a reliable mesh system. There is reliable access to wall power and WiFi 
that would support a root node, but the specified area of study is well beyond the reach of 
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said WiFi network. Selectively placed mesh nodes could be spread out around the 
surrounding location to receive and transmit data collected by leaf nodes (which would 
house all the required sensors) back to the root node. Both the mesh and leaf nodes would 
require some form of battery or solar power (or a combination of the two) as there is no 
available power source within the data collection area. 
 Multi-hop wireless mesh topology brings several benefits over a more common 
star topology, including reliability, reach, and power efficiency. [2] Mesh networks are 
able to route around anomalies that cause shadowing and reduce multipath fading by 
offering multiple pathways through different peers (Dutta). This improves overall 
performance in challenging RF environments such as heavily wooded forests, buildings, 
and hilled areas. 
Multi-hop mesh networks also bring benefits in power consumption, as multiple short 
transmissions each require less power than a longer transmission. 
 As we will be working in a heavily wooded environment with significant 
elevation changes and no line of sight between our prospective root node and the farthest 
mesh node, the possibility of transmitting data using mesh nodes over short distances to 
avoid environmental blockers is a solid prospect, considering constructing a large enough 
antenna to clear all obstacles would be difficult given the location and resources 
available, and the monthly costs associated with LTE and other similar communication 
systems would quickly add up given multiple devices. 
 Once the data is collected and aggregated at the root node, the final step that must 
be taken before giving access to the end user is the data processing level. Because the 
system would be out in uncontrolled environments there could be issues with the integrity 
of the data collected as a result of the weather or other natural phenomena. Because of 
this, some manner of error prevention and correction in software is necessary. While 
preventing data loss from errors in transmission can be done largely with methods such as 
Hamming codes and data redundancy, there must be a method in place to account for if a 
sensor stops reporting data correctly or ceases function entirely. A sensor that has become 
damaged may still be able to send correctly formatted data but that does not mean that the 
data itself is accurate to the real world input that is being measured. In a paper titled “The 
Seawater Quality Monitoring and Data Inconsistency Processing System Based on a 
Long-Range Sensor Network,” Hongji Xu et al. discuss software driven data analysis 
methods that are used to reduce error in collected data. By utilizing a method similar to 
those discussed in the paper we can make our system more robust and give end users an 
easy way to determine if physical issues are interfering with the data that is gathered. [1] 
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4. System Overview 

4.1. Methodology 
The devices have solved the proposed problem by implementing a network of 

nodes in a star topology around a gateway constructed out of a Raspberry Pi that is 
installed in the education center on the preserve. The nodes collect sensor data that is 
processed by an onboard microcontroller and then transmitted to the gateway using an 
onboard LoRa module. The gateway then uploads the data to the The Things Network 
server. The API on the server then allows us to download the data in a more usable form 
to the Pi which can apply post-processing to the data and upload it to the database on the 
website we have created. 

We had originally planned to use a rechargeable battery and solar panels to power 
the nodes but because of the locations they were installed in this solution was not 
feasible. Instead, we used a single-use lithium thionyl chloride battery that was chosen to 
give our nodes a lifespan of almost three years. The gateway is powered through a wall 
adapter in the Education Center of the Fairfield Osborn Preserve and connected to the 
Internet through their LAN. 

Our team’s solution differs from the solutions listed above by using LoRa for 
short range communication instead of costly LTE or more power demanding solutions 
such as WiFi. The recurring cost for the end users will be minimal as the only expense is 
the web server and database hosting both of which could be replaced by software on the 
gateway Pi itself, though this option would limit the accessibility of the system to only 
the LAN of the preserve. 

 

4.2. Requirements  

Marketing Requirements 
System Overview 

MR1. Node Support: The system must support a minimum of six Nodes. 
MR2. Range: Nodes must operate within a 0.75-mile radius of the Gateway. 
MR3. Autonomy: Nodes must function autonomously for three years under normal 

operating conditions (sensor readings and broadcasts to the Gateway every 15 
minutes). 

MR4. Durability: The system must be resistant to water, dust, and potential damage 
from animals. 

Data Collection and Management 

MR5. Data Collection Frequency: The data collection rate must be adjustable via the 
user dashboard, up to a maximum frequency of once every 15 minutes. 
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MR6. Data Updates: The data upload rate must be adjustable via the user dashboard, up 
to a maximum frequency of once per data point collected. 

MR7. Data Reliability: Sensor data must be accurate and reliable. 
MR8. Data Storage: 

8.1. Sensor data must be temporarily stored on each Node in the event of 
communication failure. 

8.2. Aggregated data must be retained on the Gateway for as long as necessary. 
 

User Interface and Dashboard 

MR9. Accessibility: Users must have easy access to collected data through a 
visualization dashboard 

MR10. Battery Monitoring: Node battery status must be viewable via the dashboard. 
MR11. Connection Monitoring: Node connection status must be displayed on the 

dashboard. 
MR12. Location Tracking: The location of each Node must be accessible through the 

dashboard and must be able to be changed via the dashboard. 
 
Deployment and Maintenance 

MR13. Relocatable Nodes: Nodes must be designed to allow for relocation after initial 
deployment. 

MR14. Documentation: The system must include a user manual detailing the normal 
operations of the system as well as how to maintain it in case of issues. 

Engineering Requirements 
System Overview 

ER1. The system must allow communication between a minimum of six Nodes and the 
Gateway and allow the addition of 4 more Nodes in the future. (MR1) 

ER2. Communication must be reliable, with less than 10% packet loss when the Nodes 
are installed at locations not exceeding 0.75 miles away from the Gateway in hilly 
forested terrain such as that present on the Preserve. The LoRa signal must have a 
SNR of greater than -20dB as that is the lowest signal level that can be decoded 
by our Gateway. (MR2) 

ER3. Nodes must be able to operate continuously for three years, given data collection 
once every 15 minutes, data transmission once every 15 minutes, and with an 
average battery consumption of no more than 2.5 mAh in a day of operation. 
(MR3) 

ER4. The Nodes must meet IP67 rating to survive weather conditions, and external 
wires must be resistant to damage from animals through the use of shielding and 
conduit. (MR4) 

Data Collection and Management 
ER5. The Nodes must sample data from their sensors autonomously at a frequency that 

users can change remotely through the dashboard, up to a maximum frequency of 
once every 15 minutes with a margin of +/- 1 minute. (MR5) 
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ER6. The system must autonomously upload data collected from the Nodes to a 
publicly accessible dashboard website at a frequency (minimum once per day) 
that users can change remotely through the dashboard. (MR6) 

ER7. The moisture sensors used must be calibrated before installation, with a calibrated 
range measuring water tension from 10 to 75 centibars. Error must not exceed +/- 
6 CB, two times the max error of the reference device. (MR7) 

ER8. If data sent to the Gateway is not acknowledged with a message back it must be 
stored in nonvolatile memory on the Node to ensure it is not lost. (MR 7) 

ER9. The data stored on the Node’s nonvolatile memory must be transmitted to the 
Gateway when the connection is restored between them. (MR 8) 

ER10. The data is aggregated by the Gateway and must be uploaded to a website hosting 
the dashboard, in addition it must be saved locally to a removable storage medium 
connected to the Gateway. (MR8) 

ER11. Data stored on the removable storage device must be updated with data gathered 
even if the connection with the website is lost. When the connection is 
reestablished, it must be uploaded to the server. (MR8) 

ER12. The communication between the Nodes and Gateway must be bidirectional to 
allow for verification of data receipt and reconfiguration. (MR 6) 

User Interface and Dashboard 
ER13. The data collected from the sensors must be available to users as a graph on the 

dashboard. The graphs must be able to show individual data from single Nodes as 
well as aggregated data from all of them. (MR9) 

ER14. The battery status of all of the Nodes must be available to users as graphs on the 
dashboard to allow for monitoring of the battery level remotely. (MR10) 

ER15. Battery status must be recorded with data collection from the sensors and be 
transmitted to the Gateway at the scheduled times. (MR10) 

ER16. The status of the connection between the Nodes and the Gateway must be 
available to users of the dashboard. If data is not transmitted from a Node when it 
was expected, the Node will be flagged as having been disconnected. (MR11) 

ER17. The status of the connection between the Nodes and the Gateway must be 
available to be monitored by users of the Dashboard, recording the last time a 
message was received from each Node. (MR11) 

ER18. The Nodes must be able to be shown at their location on a map to allow users to 
easily tell which Node’s data corresponds to the location of the Nodes as they 
were installed. (MR12) 

Deployment and Maintenance 
ER19. The location of each Node must be stored in the database of connected Nodes and 

be able to be changed by users of the dashboard to allow for reuse of devices and 
moving them while preserving the data. (MR13) 

ER20. The Nodes must be able to be installed by users with minimal tools and 
knowledge required to allow for easy reuse, movement, or expansion of the 
system. (MR13) 

ER21. The Nodes must be able to indicate to users installing them that they are 
connected to the network without requiring users to look at the dashboard or any 
other devices. (MR13) 
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ER22. The system must have documentation made available to users including 
instructions on how to install Nodes, how to troubleshoot connection issues, and 
how to use the dashboard to access and manipulate data. (MR14) 

 

4.3. Theory of Operation 
LoRa transmitters have three operation modes divided into classes, Class A, Class 

B, and Class C. The three classes are separated by their signal receiving behavior, which 
directly impacts the power efficiency of each class. Class A is the most power efficient, 
as the node receiver only listens during two short windows after each of its own 
transmissions, seen in Figure 1. This means nodes are only able to receive configuration 
updates after a transmission. Class B has periodic RX windows that open up every 128 
seconds; this requires synchronization between the gateway and the node in order to time 
the RX windows and the broadcasts from the gateway. In Class C, the LoRa receiver is 
constantly listening. This results in the most responsive communication with the node, 
but also the most power consumption as the radio module never actually goes to sleep. 
 

 
Figure 1: LoRa Class A visualization 
 

The power consumed by the nodes varies greatly by what the node is doing at any 
given time. For instance, the power used while broadcasting is much greater than that 
used while receiving a signal. The total energy used in a given day can be determined by 
determining the amount of time the node will be doing each activity and multiplying by 
the power used for that activity. We determined the largest contributing factors to be the 
energy used in transmission, receiving signals, measuring the sensors, the 
microcontroller’s normal running power consumption, and the energy used while the 
node is sleeping.  

Using information from the datasheets of the various components, we were able 
to calculate that the average power consumption of the microcontroller to be 80 μW,  the 
LoRa module to be 140 μW, the moisture sensors to be 37 μW, the temperature sensor to 
be 18 μW, and the SD card module to be 1.5 μW. In total the average power consumption 

14 



Remote Soil Moisture Monitoring 

of a node is 275 μW. This number does not include losses, something which we account 
for by multiplying the final result by 1.5 to get an upper estimate of 413 μW average 
power consumption. 

 
 

 
 

 

 
 

 We selected a battery that is rated for 3.6 Amp-hours of current at a voltage 3.6 V. 
Based on this capacity and the power requirements of the node, this should allow for a 
total lifespan of three years when measuring data and transmitting it every fifteen 
minutes. 

Though the batteries selected will allow for a lifespan of three years with the 
power consumption as we calculated, the batteries themselves are easy to replace for 
users of the system. The batteries will use a standard two pole connector to allow for 
quick replacement with another battery of the same type. The batteries are inside the 
sealed enclosures of the nodes to protect them from the elements. 

 
 

 
Figure 2: RF Link Power Budget 

  
 Data loss could be a prevalent factor in the unreliability of the system as we were 
unable to make the nodes store their own data locally. We had planned on using a 
nonvolatile storage medium such as a MicroSD card to keep data until the nodes received 
a confirmation message from the gateway though limitations with the microcontroller we 
chose prevented us from implementing this feature. Similarly we had planned to have the 
gateway store the data locally on an external storage device such as a USB drive but were 
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unable to accomplish this because of the encryption that TTN uses for data. Both of these 
challenges could be overcome by redesigning the relevant part of the system. 
 The scalability of this project has limits. If nodes are placed outside of the 
previously tested range then connection may not be possible with just a single gateway. It 
may require retransmission nodes or another gateway closer to the new nodes. If more 
devices are added the likelihood of device’s transmission colliding will increase greatly. 
For the max amount of nodes you would take transmission times available divided by the 
amount airtime multiplied by the amount of messages per hour or 

. Additionally the addition of more sensors or 𝑁𝑜𝑑𝑒
𝑀𝐴𝑋

=  𝑇
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

/(𝑇
𝑎𝑖𝑟𝑡𝑖𝑚𝑒

*  𝑀)

more power intensive sensors would cause a necessity of a larger battery in order for the 
node to remain powered for the specified time. 

 

5. Implementation 

5.1. Overview 
 The system we are designing uses multiple modes of communication for multiple 
purposes. The nodes use LoRaWAN to communicate with the gateway and the gateway 
uses the Internet to communicate with the TTN server, a MQTT broker, and our server. 
This combination of technologies allows for power efficient data transmission and 
communication between all involved devices. 

The LoRaWAN network is the heart of the system. The gateway is constructed 
using a Raspberry Pi and an attached header board that acts as a LoRa signal aggregator 
and transducer. The nodes use the LoRaWAN to communicate with the gateway and vice 
versa, transmitting measurements to the gateway and configuration data back to the 
nodes. 

The gateway utilizes a Raspberry Pi image provided by TTN to take these LoRa 
packets and upload them to the TTN website automatically. This is very convenient 
though the TTN website is not suitable as a data storage service so further processing is 
required. The gateway therefore uses the outgoing API that TTN provides to download 
the data onto the Pi. The gateway then uploads the data to our private SQL database via a 
PHP based API on our website. 

Communication from the website to the gateway is done periodically at a rate of 
once every five minutes. The gateway connects to the website as a way to let end users 
know that the device is still running and at the same time it checks to see if the 
configuration of the sleep duration for the nodes has changed. If the duration has changed 
then the gateway will send a MQTT message to the TTN server to schedule the downlink 
to the nodes to update this parameter. This is done in this manner because of limitations 
in how TTN schedules downlinks and how our server host handles running code we 
uploaded to it. 
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5.2. System Architecture 
The system used in our project consists of three major components; the nodes, the 

gateway, and the dashboard. The nodes and gateway have varied hardware and software 
needs represented below in figure 3. The dashboard contains several parts, with each 
component represented below with software diagrams. The nodes communicate with the 
gateway, and the gateway communicates with the dashboard. The dashboard is also able 
to control nodes through the gateway.  

 
 
 

 
Figure 3: System Overview 
 

 
Figure 4: The communication between the sensor node and gateway 
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The system has been deployed with the nodes communicating to the gateway via 
LoRa, while the gateway uses WiFi to connect to the dashboard, shown in figure 4. The 
nodes record their battery’s voltage, two measurements of the water tension of the soil 
and a measurement of the temperature of the soil before sending the data to the gateway. 

The sensors used on each node are two Irrometer 200SS Soil Moisture Sensors 
and an Irrometer 200TS Soil Temperature Sensor. As reported by the datasheet, the 
moisture sensors measure the pressure required to draw water from the soil in kPa of 
vacuum and can be calibrated to ± 6kPa over the range from -10 to -75 kPa of vacuum. 
The temperature sensor has a maximum temperature it can operate at of 150 °C and has a 
maximum power rating of 30 mW at 25°C derated to 1 mW at 125°C. The accuracy of 
the sensor is ± 0.2 °C in the range from -55 °C to the maximum operating temperature.  

 
Figure 5: The hardware block diagram of the nodes 
 

Using the LoRa RAK3172 module nodes communicate with the gateway through 
an antenna. The nodes are powered by a Lithium Thionyl Chloride battery that is 
regulated to the 3.3 V needed for the microcontroller. The moisture and temperature 
sensors will be fed through the microcontroller’s 12-bit ADC, as well as the battery’s 
voltage. Because the HTCC-AB01 microcontroller only has one analog input pin, we 
designed a multiplexor circuit that is able to connect each of the sensors to the ADC pin. 
All of the hardware components can be seen in figure 5. 
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Figure 6: Hardware diagram of the Gateway 

 
 
The gateway is powered by a wall adapter, and communicates two ways. The 

communication with the nodes is done through a LoRa Concentrator, which is interfaced 
with the Pi through the GPIO pins. The gateway communicates to the dashboard through 
the Raspberry Pi’s WiFi module and the existing internet connection present on the 
preserve. The gateway’s design can be seen in figure 6 
  

 
Figure 7: The software design of the sensor nodes 
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Figure 8: The software design of the gateway 
  
 The gateway operates on two main threads, one to listen for LoRa packets from the nodes 
and the other to interface with the dashboard website. Data from the nodes is processed through 
the TTN server and then uploaded to our website’s database through an API. At the same time, 
the gateway periodically connects to the dashboard website to verify to users that the system is 
functioning and download the most recent sleep duration as set by the users. The flowchart can 
be seen in figure 8. 
 
 

 
Figure 9: The software design of the Dashboard 
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  The dashboard’s design, seen in figure 9, allows for the user to visualize collected 

data, view the status of the system as a whole, update the duration that the nodes will 
sleep for, and to edit the stored information regarding nodes and their placement. The 
nodes are also plotted as points on a map of the preserve via the location that users input 
when configuring the nodes in the installation process.  

The status of the system is determined by comparing the last received 
measurement from each node to what time the measurement should have come in at 
given the current sleep duration. If a node has not uploaded data in longer than the period 
between measurements should be, it is deemed as being disconnected from the system. 
The data in each measurement is also analyzed and if any of the measurements are 
outside the bounds of what the value should normally be it is marked as a potential error. 
Users of the site can see which nodes have had either errors or low battery voltage 
through the status page. 

5.3. Alternative Design Matrix 
Below are three Alternative Design Matrices explaining the selection criteria for 

three components vital to the success of our project. In Table 1, we address the selection 
criteria for the wireless communication technology to be used. We prioritized range, as 
the deployment area for this system lacks line of sight and has dense tree cover. Cost was 
another consideration, as our budget is limited and our clients requested that yearly 
subscriptions be kept to a minimum, which makes LTE a difficult choice. Ultimately, it 
was kept as a backup in the case our other options failed. Transfer speed and ease of use 
were relatively minor considerations, as we are not using sensors that require large data 
transfers and all three options pose their own unique challenges. Power consumption, 
while extremely important for a battery-powered device, had to be balanced with the total 
range of the technology and the required number of devices required to reach the network 
found at the preserve’s Education Center. While BLE Nano had the lowest power 
requirements, it also had the lowest range, requiring multiple devices to forward packets 
0.75 miles to a gateway; this ultimately made it a less appealing choice.  

In Table 2, we cover the criteria for selecting the microcontroller to be used in 
each node. It should be noted that there were three design philosophies to choose from 
when selecting a microcontroller: select a microcontroller with an integrated LoRa radio 
module, select a microcontroller and pair it with a standalone LoRa radio module, such as 
the SX1276, or select a microcontroller and pair it with a SoC LoRa radio module that 
has its own built in microcontroller, such as the RAK3172 that is based on the 
STM32WLE5. As for why we decided to go with the third option, combining a 
STM32F401 microcontroller with a RAK3172, the decision goes beyond what is shown 
in the design matrix. First, the cost of a standalone LoRa radio module (such as the 
SX1276) combined with the need to create custom firmware to implement the LoRa stack 
makes it less appealing than the RAK3172, which is almost the exact same price as a 
stand alone radio module and has the capability of receiving AT and binary commands to 
implement LoRaWAN, requiring no custom firmware. Second, while the STM32WLE5 
in the RAK3172 is an excellent choice as a standalone microcontroller with built in LoRa 
capabilities, its form factor is limited unless you design a full PCB around a bare 
STM32WLE5 chip. This is mandatory to gain access to all the necessary peripherals of 
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the device, but also because development boards for the STM32WLE5 are significantly 
more expensive than our other options. Even if we were intending on designing a PCB to 
support a bare microcontroller chip, which is not easy to due considering our limited 
time, the STM32WLE5 lacks the sheer number of peripherals and features supported by 
the STM32F401; one of the most important being SDIO, which will be used to interface 
an external SD card for long-term data storage. By combining the STM32F401 and the 
STM32WLE5 found inside the RAK3172, we are achieving several things. First, the 
process of collecting and processing data and sending/receiving LoRa signals is 
separated, allowing for isolation between both the devices and code. Not only does this 
allow for easier debugging during development and in the future, but it also allows the 
firmware (or even hardware) related to the STM32F401 to be changed or upgraded 
without having to worry about the LoRa component (as long as you can still send AT 
commands). However, it was soon discovered that the STM32F401 developer boards we 
purchased had significant parasitic current draw that would require significant board 
modifications to remove. As a solution, we pivoted to the HTCC-AB01 microcontroller, 
which offered low power consumption and an integrated radio module. As a tradeoff, it 
only had a single ADC pin with no internal multiplexing, which is something we had to 
deal with further down the line. 

In Table 3, the criteria for selecting our LoRa gateway was much more cut and 
dry. For cost, considering we only require a single gateway for this project, and all entry 
level gateways cost a similar amount, the price of our selected gateway took minor 
precedence over its other features. Power, while not normally a concern for a device 
that’s going to be plugged into a wall outlet, is a slight concern for us as the preserve’s 
Education Center is completely off grid, relying on solar power and batteries. That being 
said, we needed a device that was easy to use, or at least familiar to us (which is the case 
with the Raspberry Pi). Now, even though off the shelf gateways like the Dragino LG308 
are relatively plug and play, they lack any form of (customizable) onboard computing, 
which we intend on using to process and store sensor data, providing an additional layer 
of data storage and processing beyond the nodes and database.  

 
 

Table 1: Comparison of Wireless Communication Technologies 
Raw Scores Weighted Scores 

Criteria LoRaWAN BLE Nano LTE LoRaWAN BLE Nano LTE 

Cost 4 2 1 0.364 0.222 0.125 

Range 4  
(10 km) 

3 
(0.1 km) 

5 
(20 km) 0.250 0.250 0.250 

Power Consumption 2 
(100 mA) 

3 
(20 mA) 

2 
(100 mA) 0.222 0.300 0.222 

Transfer Speed 2 
(27 kbps) 

3 
(2 Mbps) 

5 
(200 Mbps) 0.167 0.231 0.333 

Ease of Use 3 2 2 0.300 0.222 0.222 

Score  1.303 1.225 1.153 
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Table 2: Comparison of Microcontrollers 

Raw Scores Weighted Scores 

Criteria ESP32-C3 STM32F401 
Cubecell 

AB0
1 

ESP32-C3 STM32F401 
Cubecell 

AB0
1 

Cost 3 ($8) 4 ($6) 5 ($5) 0.250 0.333 0.417 

Program Memory 
4 

(4000 KB) 
3 

(256 KB) 
2 

(128 KB) 0.444 0.333 0.222 

Sleep Current 2 
(5 uA) 

5 
(2.4 uA) 

3 
(2.5 uA) 0.200 0.500 0.300 

ADC/IO 4 4 1 0.444 0.445 0.111 

Ease of Use 4 3 3 0.400 0.300 0.300 

Score    1.739 1.911 1.350 

 
Table 3: Comparison of LoRa Gateways 

Raw Scores Weighted Scores 

Criteria Dragino LG308 Raspberry Pi Dragino LG308 Raspberry Pi 

Cost 3 ($350) 3 ($200) 0.500 0.500 

Power Usage 2 (12W) 3 (5W) 0.400 0.600 

Computing 2 4 0.333 0.667 

Ease of Use 5 2 0.714 0.286 

Score   1.948 2.052 

 

5.4. Budget 
Our project was funded through a generous grant from the Norwick Memorial 

Fund, giving us a budget of $2000 for the full implementation. In order to stay within this 
budget, considerations were made when choosing sources for each component to develop 
a working system for the lowest cost possible. Though there were other goals we had 
wanted to reach beyond the requirements given to us by our client, the cost of the 
required sensors precluded us from going beyond the required specifications.  
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Table 4: Parts list with prices and a short description 

Item Part No. Purpose Manufacturer Supplier Price Quantity Ext. Price 

Microcontroller HTCC-AB01 
V2 Controller Heltech Amazon 15 6 90 

LoRa 
Concentrator RAK2287 Gateway RAKwireless RAKwireless 155 1 155 

Single Board 
Computer SC0193(9) Gateway Raspberry Pi RAKwireless 45 1 45 

Various Parts Various 
Resistors, 
Connectors, 
Wires, etc. 

Various DigiKey 200 1 200 

Web Hosting N/A Supporting 
Backend Hostinger Hostinger 100 1 100 

Main Battery LS17500 
Main Power for 
Node SAFT Amazon 16.39 12 196.68 

UV Resin Fast Battery Holder Siraya Tech Amazon 27.74 3 83.22 

Soil 
Temperature 
Sensor 200TS 

Temperature 
Compensation Irrometer 

Forestry 
Suppliers 40 6 240 

PCB Custom 
Interfacing 
Node 
Components 

PCBWay PCBWay 6.35 10 63.5 

IP67 Electrical 
Box BG595935 Node 

Enclosure Joinfworld Amazon 15.1 6 90.6 

Antenna AOA-915-5A
CM 

Improve Signal 
Transmission ALFA Amazon 15 6 90 

Soil Moisture 
Sensor 200SS 

Measure Soil 
Moisture 
Content 

Irrometer Forestry 
Suppliers 44.5 12 534 

      Final Total: 1887.72 

 
 

5.5. Project Schedule 
While the project does have several critical steps that must be completed in order 

and on time, there are several steps that can be completed in parallel. These steps include 
working on the project report, slides, and poster. Additionally, these steps can be worked 
on throughout the project, and are less impacted by other steps as they can be slowly built 
upon as the rest of the project progresses. 
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Table 5:  Gantt Chart 

 
Gantt Chart not including Slack or Highlighted Critical Path 
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Figure 10: Critical Path Chart  
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6. Tests Conducted 

6.1. Summary of Test 
Below, we present a summary of tests that are conducted so far and those that are 

planned for the future 
 
Table 6: Summary of conducted tests. 
 

Test Number Test Objective  
 

Related ER Status Notes 

FT-1 LoRa 915 MHz 
Range Test 

ER2 Completed Signal test under 
worst-case 
conditions 
completed 

FT-2 Connect TTN 
server to our 
database and 
website 

ER6 Completed  

FT-3 Create web 
application for 
user interface 

ER6 Completed Details will 
change as project 
progresses 

FT-4 Test 
communication 
from Gateway 
to Nodes 

ER4 Completed Connect Node to 
serial monitor and 
print received data 

FT-5 Testing Device 
Enclosure  

ER2 Completed Waterproof up to 
40 inches of water 
for 30 minutes 

FT-6 Moisture 
Sensor 
Calibration 
Test 

ER7 Completed Water tension & 
temperature 
compensation 

FT-7 Testing 
interruptions of 
Gateway 
service and 
testing LED 
status indicator 

ER21 Complete  
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FT-8 Verifying 
reported ADC 
values aligns 
with measured 

ER7 Complete  

ST-1 Test Device 
Comm. with 
Web Server 

ER4,ER6 Completed Must upload/ 
download with 
minimal loss 

ST-2 Parameter 
Change for 
Nodes 

ER4 Completed Timestamps must 
be accurate 

ST-3 Power 
Consumption 
and Battery 
Life 

ER2 In-Progress Dependent on 
frequency of data 
collection 
& transmission 

ST-4 Full Autonomy 
Test 

ALL ER In-progress The Nodes are 
installed and their 
autonomous 
behavior is being 
recorded 

 

6.2. Description of Tests 

Function Tests 

FT1 - LoRa 915 MHz Range Test 
The purpose of this test was to verify that the gateway is able to receive data from 

the nodes when installed in the client’s requested locations on site with no packet loss and 
received signal to noise ratio of over -20 dB, which is the physical limit for LoRa.  
We were able to successfully connect a LoRa device to the gateway installed in the 
Education Center and send messages to it from various points along the trail running 
through the Preserve.  
 The setup, pictured in figure 11, involved a borrowed Dragino gateway, a cubcell 
test device with a 3dBi antenna, and a mapping software used to see if data was received. 
The test was conducted on the FOP at locations similar to our final locations where tree 
cover is present. 
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Figure 11: Setup For FT1 

 We tested 16 locations using this setup, and recorded the SNR and RSSI values 
for these locations, map seen in figure 12 and the data in table 7. In the appendix is a map 
of all locations and their corresponding values, and below is a smaller map and table with 
more information, including the elevation and distance.  

 
Figure 12: Map of 4 points 
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Table 7: Values associated with the points on the map 
Node 1 2 3 4 

Latitude 38.3506 38.3512 38.3514 38.3523 

Longitude -122.587 -122.586 -122.586 -122.587 

Elevation (Feet) 2066 2076 2091 2151 

Distance from 
Gateway (Miles) 

0.651 0.725 0.727 0.745 

RSSI (dB) -134 -113 -112 -117 

SNR (dB) -15.5 -8 -7 0.5 

 
The signal received was of higher SNR than the minimum required to pass the test 

and prove LoRa as a viable system however it was still very low. We plan on doing 
further testing in the future to ensure that this will not drop below the limit of what is 
detectable by using either better antennas that lose less energy vertically or by using more 
amplification. 
 

FT2 - Connect TTN server to our database and website 
The purpose of this test was to verify that the system can autonomously upload 

data from nodes to our dashboard website. This was done using the Raspberry Pi 
gateway, and a LoRa test device. The device communicated with TTN through the 
gateway, then the data was sent from the Gateway to our database as seen in figure 13. 

 
Figure 13: Setup for FT2 
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Figure 14: Received dummy data from the test device 

The node was connected to the gateway as in the previous test and the gateway 
was connected to the TTN servers. We were able to successfully connect our Raspberry 
Pi and other devices to the TTN server with our API key and download the data to store it 
locally. The received data picture in figure 14. This data was then uploaded to the 
database we have created using the API we made for that purpose.  
 

FT3 - Test web application for user interface 
The purpose of this test was to verify that an end user of our control dashboard 

can control system parameters through our website. 
We created a dashboard website with access to APIs and user input scripts that 

allowed users to input settings to have the server push to the gateway and then the nodes 
from there. The script on the page creates a locally hosted JSON formatted file that would 
then be downloaded by the gateway. The setup is visualized in figure 15. 

 

 
Figure 15: Setup for FT3 

 
The creation of the file from user inputs was a success. When this test was run, 

our next steps moving forward from here were to attempt to make the MQTT 
communication channel between the devices and to make the gateway device download 
the data. We were unable to implement the MQTT protocol on the server as we had 
wanted to but were able to get the gateway to download data from the server.  
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FT4 - Test communication from Gateway to Node 
 The purpose of this test is to ensure that the configuration changes made by the 
dashboard are seen at the nodes. We determined this by using a serial monitor attached to 
a test device using the same HTCC-AB01 microcontroller we used in the nodes and 
scheduling a downlink message through TTN directly via their downlink scheduler, 
shown in figure 16.  
 

 
Figure 16: Setup for FT4 

 

FT5 - Testing Device Enclosure 
 The purpose of this test is to ensure the enclosures are capable of withstanding 
being outside in rainy and dusty conditions. 
 The Node enclosures were sealed with absorbent material and weights inside. 
Once sealed as they would be under normal operating conditions, the enclosures were 
submerged under 40 inches of water for 30 minutes. Upon reaching 30 minutes of 
submersion, the enclosures were removed from the water and inspected for any water 
intrusion. Inspection was visual only; the absorbent material as well as the inside walls 
and connectors of the Node were inspected for any presence of water. 
 This test was a success; none of the nodes experienced any form of water 
intrusion through either the main lid seal or the two bulkhead connectors. Each bulkhead 
connector was sealed with an o-ring and a rubberized gasket maker on all of the exterior 
threaded connections; disassembly of the node will require the cleaning and reapplication 
of sealant on all threaded connections. 
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FT6 - Sensor Calibration 
 The purpose of this test is to ensure the soil moisture sensor is within  +/- ^ kPa 
within a range of -10 to -75 kPa. The test also ensures that the temperature sensor is 
within +/- 0.4℃ of calibrated thermometers. This test was conducted using the buried 
sensors and known calibrated equipment. Using an IRROMETER Tensiometer, calibrated 
for a range of 0 to -100 kPa, we tested our own IRROMETER 200SS sensor by having 
both sensors placed in the same soil, seen in figure 17, with the same amount of water 
within the soil. An image of the setup is below. 

 
Figure 17: The calibrated sensor and our sensors in the soil for testing 
 

Using this method we calibrated both the temperature and the soil 
moisture sensor, these sensors communicated via LoRa to send the output data for 
later graphing. As seen by the plot below the sensors were within our target 
calibration range. 
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Figure 18: The graph of the reported values of the Tensiometer and the 200SS sensor 

 
 Using the data from figure 18, we were able to confirm that the sensor was 
functioning according to the specification on the data sheet, and that the values 
were within our target range of values. More graphs and a larger version of the 
above can be seen in the appendix. 

FT7 - Testing interruptions of Gateway service and testing LED status indicator 
 

The purpose of this test is to ensure that the node will continue functioning 
correctly even if its connection to the gateway is temporarily lost, or if the connection to 
TTN is interrupted that the nodes will function when connection is restored. This is 
indicated by the status LED on the microcontroller. This test was completed by taking a 
microcontroller with the correct node code, and seeing if an LED flash occurs at the 
correct events or by seeing the serial output of the device. 

 

34 



Remote Soil Moisture Monitoring 

Figure 19: The setup for FT7 
The node operated as expected, each event triggered the corresponding LED 

flash. Each event was repeated, and every repetition repeated the expected results. When 
the connection to TTN or the gateway itself was interrupted the nodes functioned 
correctly, continuing to keep their sleep duration constant and continued making 
measurements.  

FT8 - Verifying reported ADC values align with measured 
 

The purpose of this test is to ensure that the 12-bit ADC on the AB-01 
microcontroller is reading consistent values. In order to complete this test we used a 
benchtop digital multimeter (DMM) to ensure that the value reported by the 
microcontroller was accurate. This test was completed by using the benchtop DMM to 
read the voltage across a voltage divider that was feeding into the ADC on the 
microcontroller, while the ADC output was written to the serial monitor.  

 
Figure 20: Setup for FT8 

 
Conducting this test we found that the claimed reference voltage was actually 15 

mV lower than what was stated on the data sheet. We then recompleted this test with a 
calibrated reference voltage to see how the difference between reported and measured 
changed, seen in figure 22. Both tables are below, and tables with all data points are in 
the appendix. 
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Figure 21: Uncalibrated ADC measurements 

 
Figure 22: Calibrated ADC measurements 

This error can be calibrated out, if this test was repeated for each node deployed, 
however we determined that this was not necessary as the difference in measured values 
equals to 2 CB at maximum, which is within our accuracy range for the sensors. 
Adjusting the reference voltage eliminates the error entirely, so if future students wished 
they could calibrate each node for higher accuracy.  

System Tests 
 

ST1 - Testing Device communication with the Dashboard 
 The purpose of this test is to ensure that the communication between deployed 
nodes and the dashboard is reliable and accurate. 
 

36 



Remote Soil Moisture Monitoring 

 
Figure 23: Setup for ST1 
 
 We installed the nodes in their final locations on the preserve and connected them 
to the gateway we had installed in the Education Center. From there we observed the 
dashboard website and verified that data was being uploaded successfully. Shown in 
figure 23.  This test served as a full system test for uploading data and was a remarkable 
success. 

 
Figure 24: Analysis of missed communication 

  
 By analyzing the timestamps of the received data from the website, we were able 
to determine how many data points were missed compared to the number that we 
expected to receive from each node, seen in figure 24. Our requirement for the project 
was to drop no more than 10% of packets from any node and we satisfied the 
requirement. The node that has the worst signal quality was determined to lose only 
2.74% of the attempted transmissions over the week-long observation period of this test. 
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ST2 - Parameter Changes for Nodes 
 The purpose of this test is to ensure that the updates from the dashboard are 
changing the desired parameters on the nodes and that the sleep routine functions as 
intended. 
 

 
Figure 25: Setup for ST2 

 
 We verified that the nodes could have their sleep duration changed via downlink 
message with them installed on the fields in the process of our installation.  

To verify the sleep duration is accurate to the value it should be, we downloaded 
the aggregated data from the dashboard and analyzed the timestamps of it using 
MATLAB. From this data we were able to determine that the sleep duration as set on the 
nodes is within the one minute criteria we set out to achieve.   
 
Table 8: Analysis of sleep duration 

Node Time Delay (s) Standard Deviation (s) 
1 913.5051 11.353 
2 911.62 10.0817 
3 910.8443 9.2475 
4 909.0372 3.5475 
5 915.7446 9.9674 
6 913.8262 9.2558 

 
 

ST3 - Power consumption and Battery life 
 The purpose of this test is to ensure that the battery will last the estimated time. 
This will be accomplished by measuring the average power consumption used in a day 
and extrapolated from there. 
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ST4 - Full Autonomy Test 
The purpose of this test is to put the whole system together and have it function 

while on the FOP. This test verifies that the nodes can function autonomously for an 
extended period of time when installed on the FOP, and verifies that the downlinks 
function while the nodes are at their locations on the FOP. 

 
Figure 26: The Setup for ST4 

The deployed nodes are monitored based upon the data being visualized 
on the website, and the status of nodes are monitored through its dedicated 
webpage. Below is graphed data from 3 days of full autonomy, but the current 
status of the test can be viewed from the link on the cover page. 

 
Figure 27: Graphed data from autonomy test 

This test is still ongoing, however the nodes have functioned properly for 
the time they have been installed. The nodes were installed on the 19th of April, 
2025. The downlink test was performed while the nodes were on the preserve, and 
they have been successfully received by the nodes. 

The gateway, also deployed on the preserve, has had some issues since its 
deployment. Its connection to TTN has not been completely stable, likely due to 
the fact that the WiFi on the preserve is heavily managed with no provided 
workarounds or documentation as to the specific restrictions. The Raspberry Pi 
has temporarily lost the ability to complete DNS lookups, causing the Pi to lose 
connection to TTN’s servers, which use dynamic IP addresses. Connection to our 
webpage has been constant, as it has a static IP address. This further confirms the 
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issue is DNS related. This issue is currently being addressed, and will require 
further work during the summer by another student or team.  

 

7. Ethics 
Ethical design requires taking several factors into consideration during design. 

The design of a system that does not exploit the people or the environment, as well as a 
system that does not use manipulative tactics, respects data privacy, and a system that 
allows for cooperative design.[4] Our system primarily must contend with the 
environmental impact of our physical system, as well as data-privacy as users access the 
online database. 

The environmental concerns that are raised by this project are from the single-use 
battery, from the physical degradation of the devices, and from soil disturbance on the 
preserve. Single-use non-rechargeable batteries can raise environmental concerns, if not 
recycled properly as they contain hazardous materials.[5] The manufacturing process to 
make batteries can be highly toxic, and can leave behind a large environmental effect. 

This project will allow for long term data collection of soil moisture on the 
Fairfield Osborn Preserve, which would allow for continued knowledge about the soil 
health. This data will help researchers understand the soil condition as a cattle grazing 
study is conducted. The labor impact of our system would lower the necessity for the 
researcher to hike out into the field in order to collect data.  

When the battery used in our system is depleted it will require replacing with a 
battery of similar specifications. This will require the user to hike to the locations of the 
nodes and replace them, ensuring that the now dead battery is retrieved for proper 
disposal. The batteries used in this project are non-rechargeable, and should be recycled 
using a battery recycling program. 

When the devices used in our project stop working the user will be able to know 
the status using the dashboard, allowing for the user to then go out and retrieve the device 
stopping it from continually degrading in the environment. The interface with the device 
will require only a basic internet connection, and would be highly accessible for a 
disabled person with a computer interface with accommodations for their disability. 
Potential harm our devices could cause come from the nodes prematurely degrading, 
releasing potentially toxic materials into the soil. The enclosure for the nodes will ensure 
that the node does degrade in the weather conditions that are expected in the 
environment.  
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8. Challenges  
 

There were several challenges that had to be overcome for this project to succeed. 
First and foremost was finding a cost-effective wireless communication method that 
could transmit sensor data without transmission issues 0.75 miles with heavy tree cover, 
elevation change, rolling hills, and little to no line of sight. Since cellular services were 
not an option, per our client’s request, our only option was to use a wireless 
communication method that is more cost effective than cellular transmitters, to relay 
sensor data back to a preexisting WiFi source. The LoRa 915 MHz band is perfect for this 
situation. 

Though the communication method is a solved problem, we still had to power the 
devices. Since wall power was not an option for any of the nodes, battery and solar power 
were our only options. However, to keep costs down, we could not simply install an 
oversized battery and solar panel for each device; this would increase costs significantly 
and make potential future scaling difficult due to the overall cost of each device, not to 
mention the increased installation difficulty. Additionally, some areas in the preserve 
have heavy tree cover, limiting the amount of sun a panel would be exposed to. As a 
result, we had to reduce the power consumption of each node through hibernation and 
other power-saving methods, reducing the need for large batteries and solar panels. 
Finally, the same environment that dictated the need for batteries and solar panels also 
dictated the need for resilient housings for each node. The Fairfield Osborn Preserve, 
while not the harshest environment, will still expose the sensor nodes to a multitude of 
environmental hazards. These include rain, dust, mud, wildlife, UV radiation, and 
varying temperatures. The housing containing all of the electronic devices that make up 
each node must protect said components from damage during their deployment. 

When beginning this project we anticipated encountering risks in the design 
process that would require us to change our design. We were concerned that it was 
possible that our selected microprocessor either lacked the required peripherals or 
processing power to carry out its tasks, a concern that we mitigated by carefully selecting 
our microcontrollers to exceed the requirements to allow for changes that came. We were 
also very concerned about the ability of LoRa to transmit the data we required which led 
us to conduct several tests of the wireless capabilities on site at the Preserve. Had we 
encountered issues with the communication we could have mitigated them by using 
directional antennas or amplifier circuits. 

Additionally, we faced challenges implementing features originally planned for 
the project; primarily local storage on the nodes and on the gateway. TTN was selected 
early on in the project, as it was what was familiar to our team and as far as we knew 
would be sufficient to complete the goals of our project. However, after time and 
development we found that TTN does not support gateway retransmission, as any packets 
TTN receive that are out of order or have any issue with their frame counter are simply 
dropped. This meant that retransmission of locally stored data would be impossible to 
implement without changing the LoRaWAN gateway software and management service 
we were using. This could have been alleviated if ChirpStack had been implemented in 
TTN’s stead, this however would also have drawbacks. Using TTN gives additional 
benefits, such as our nodes being able to send data to TTN even when the nodes cannot 
connect to our gateway. As TTN boasts interconnectivity, as long as the node can connect 
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to any LoRaWAN gateway registered to TTN it can send data. During our 
implementation of this project, our own gateway was having difficulties connecting to 
TTN, meaning that several of our nodes could not send data, but because the other nodes 
could connect to another gateway we were still able to see data.  

Furthermore, because retransmission was not possible on the gateway, it was not 
implemented on the node. Because of this local data storage was not implemented on the 
node. In order to implement node data storage a storage protocol, storage device, and 
retransmission protocol would have been needed, all of which would have added 
significant complexity to the nodes. To ensure that the data is not duplicated or lost, 
implementing storage on the nodes also requires implementing an additional RTC module 
to timestamp data as well as the physical interface for the MicroSD card. These 
additional devices would require a redesign of the PCB and add a significant amount of 
complexity.  

Our team also had challenges with the server hosting on Hostinger, as we were 
not able to implement all of the features we wanted on the website itself. Hostinger was 
not able to accommodate our use of MQTT. Originally we had wanted the website to 
send the MQTT message itself, however because MQTT is not a standard communication 
method that is supported by browsers, we needed to use a python script to schedule and 
send the MQTT requests. Hostinger allows for JavaScript to be run, but severely limits 
what could be done with python, and we were unable to configure a JavaScript to 
complete this task effectively. We are still unsure of the cause of this issue and future 
work may be able to solve it. In order to circumvent this we used a MQTT broker to 
schedule the messages. This issue with Hostinger also meant that we had to put the ‘push’ 
program, the program to push data from TTN to our website, on the Pi gateway, when 
optimally it would be on a server. A future improvement of this project would be fixing 
these issues by hosting our website on our own server, allowing for these programs to be 
run and edited remotely, as well as, avoiding the need of more third party software.  

 

9. Conclusion 
The system we designed functions well enough to complete the goal we had set 

out to meet. The system is able to remotely monitor soil moisture and report the 
measurements to our website where it can be easily visualized. The nodes communicate 
across the Fairfield Osborn Preserve to our gateway using LoRaWAN, and our gateway is 
able to report that data to our website via WiFi. The implementation is not perfect, as 
there were several features we wanted to implement but were unable to, and there are 
several improvements that could be made to the project.  

There were several areas in the project that could be improved upon in the future 
to make the system more accessible to users. As discussed in the challenges section, we 
were unable to meet some of the requirements we set out to achieve regarding the data 
storage and retransmission on the nodes. This feature would have been very useful to 
prevent data loss in the outages we have had from the gateway not connecting to the TTN 
servers correctly and if we had known the full limitations of using TTN for decoding the 
LoRaWAN packets we may have decided against using their service.  

Similarly, we had trouble with the microcontrollers we used for the project with 
our original choice not being viable for our application because of significantly higher 
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power consumption than the datasheet would suggest. Our original solution would have 
had the available pins to simplify our PCB as well as interface with a microSD card for 
local storage but because of the higher power consumption we were forced to change to a 
different microcontroller.  

Though we encountered these issues in our project, we were still able to deliver a 
system to the Fairfield Osborn Preserve that can be used for the study they are currently 
planning on conducting as well as expansion in the future for use in other ecological 
studies. 
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Appendix 
FT-1 Additional data 

 
Figure 28: Large map with all data points 

Table 9: Values for all map data points 
Point RSSI SNR 

1 -21 9.8 

2 -48 9 

3 -60 10.2 

4 -12 9.5 

5 -17 10.8 

6 -115 -1.2 

7 -101 8.5 

8 -116 -4.5 
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9 -134 -7.2 

10 -124 -7.2 

11 -120 -6.5 

12 -113 -8 

13 -112 -7 

14 -113 -7.5 

15 -110 2 

16 -117 0.5 
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FT-7 Additional Data: 

 
Figure 29: Larger Version of water tension graph 
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Figure 30: Fast Drying Curve 

Figure 31: Readings of water tension across 5 days 
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FT-8 Additional data: 

  

Uncalibrated Calibrated 

 
MATLAB code used to analyze timestamp data  
%% read data from file and select range 
tableIn = readtable("data_export2.csv", 'DatetimeType', 'datetime'); 
data = tableIn(:,1:7); 
data = sortrows(data, 'timestamp'); 
 
%cutoffTime = datetime('2025-04-13 12:00:00'); 
%data = data(data.timestamp >= cutoffTime, :); 
 
subsetTables = cell(1,6); 
 
for i = 1:6 
    subsetTables{i} = data(data{:,2} == i, :); 
end 
 
Node1Data = subsetTables{1}; 
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Node2Data = subsetTables{2}; 
Node3Data = subsetTables{3}; 
Node4Data = subsetTables{4}; 
Node5Data = subsetTables{5}; 
Node6Data = subsetTables{6}; 
 
Node1Delta = diff(Node1Data.timestamp); 
Node2Delta = diff(Node2Data.timestamp); 
Node3Delta = diff(Node3Data.timestamp); 
Node4Delta = diff(Node4Data.timestamp); 
Node5Delta = diff(Node5Data.timestamp); 
Node6Delta = diff(Node6Data.timestamp); 
 
%% calculate the percentage of missed values 
missedData1 = sum(Node1Delta > minutes(16)); 
missedData2 = sum(Node2Delta > minutes(16)); 
missedData3 = sum(Node3Delta > minutes(16)); 
missedData4 = sum(Node4Delta > minutes(16)); 
missedData5 = sum(Node5Delta > minutes(16)); 
missedData6 = sum(Node6Delta > minutes(16)); 
 
%technically wrong because it undercounts by the number of misses.  
%Ignoring this 
loss1 = missedData1 / height(Node1Data); 
loss2 = missedData2 / height(Node2Data); 
loss3 = missedData3 / height(Node3Data); 
loss4 = missedData4 / height(Node4Data); 
loss5 = missedData5 / height(Node5Data); 
loss6 = missedData6 / height(Node6Data); 
 
%% Plot figures for timestamp differences 
 
figure(1) 
Node1Timestamp = Node1Data.timestamp; 
Node1Delta = diff(Node1Timestamp); 
plot(Node1Timestamp(2:end), minutes(Node1Delta)) 
title("Difference in measurement timestamps") 
xlabel("time received") 
ylabel("time since last value") 
 
figure(2) 
Node2Timestamp = Node2Data.timestamp; 
Node2Delta = diff(Node2Timestamp); 
plot(Node2Timestamp(2:end), minutes(Node2Delta)) 
title("Difference in measurement timestamps") 
xlabel("time received") 
ylabel("time since last value") 
 
figure(3) 
Node3Timestamp = Node3Data.timestamp; 
Node3Delta = diff(Node3Timestamp); 
plot(Node3Timestamp(2:end), minutes(Node3Delta)) 
title("Difference in measurement timestamps") 
xlabel("time received") 
ylabel("time since last value") 
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figure(4) 
Node4Timestamp = Node4Data.timestamp; 
Node4Delta = diff(Node4Timestamp); 
plot(Node4Timestamp(2:end), minutes(Node4Delta)) 
title("Difference in measurement timestamps") 
xlabel("time received") 
ylabel("time since last value") 
 
figure(5) 
Node5Timestamp = Node5Data.timestamp; 
Node5Delta = diff(Node5Timestamp); 
plot(Node5Timestamp(2:end), minutes(Node5Delta)) 
title("Difference in measurement timestamps") 
xlabel("time received") 
ylabel("time since last value") 
 
figure(6) 
Node6Timestamp = Node6Data.timestamp; 
Node6Delta = diff(Node6Timestamp); 
plot(Node6Timestamp(2:end), minutes(Node6Delta)) 
title("Difference in measurement timestamps") 
xlabel("time received") 
ylabel("time since last value") 
 
%% find mean and std dev of timestamp differences 
 
% Calculate time differences in seconds 
dtSeconds1 = seconds(Node1Delta);  % Convert to seconds 
dtSeconds2 = seconds(Node2Delta); 
dtSeconds3 = seconds(Node3Delta); 
dtSeconds4 = seconds(Node4Delta); 
dtSeconds5 = seconds(Node5Delta); 
dtSeconds6 = seconds(Node6Delta); 
 
% Filter for time differences between 14 and 16 minutes (now in seconds) 
Node1TimestampsFiltered = dtSeconds1(dtSeconds1 >= 14 * 60 & dtSeconds1 
< 16 * 60); 
Node2TimestampsFiltered = dtSeconds2(dtSeconds2 >= 14 * 60 & dtSeconds2 
< 16 * 60); 
Node3TimestampsFiltered = dtSeconds3(dtSeconds3 >= 14 * 60 & dtSeconds3 
< 16 * 60); 
Node4TimestampsFiltered = dtSeconds4(dtSeconds4 >= 14 * 60 & dtSeconds4 
< 16 * 60); 
Node5TimestampsFiltered = dtSeconds5(dtSeconds5 >= 14 * 60 & dtSeconds5 
< 16 * 60); 
Node6TimestampsFiltered = dtSeconds6(dtSeconds6 >= 14 * 60 & dtSeconds6 
< 16 * 60); 
 
% Calculate average and standard deviation in seconds 
avgDelta1 = mean(Node1TimestampsFiltered); 
stdDev1 = std(Node1TimestampsFiltered); 
avgDelta2 = mean(Node2TimestampsFiltered); 
stdDev2 = std(Node2TimestampsFiltered); 
avgDelta3 = mean(Node3TimestampsFiltered); 
stdDev3 = std(Node3TimestampsFiltered); 
avgDelta4 = mean(Node4TimestampsFiltered); 
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stdDev4 = std(Node4TimestampsFiltered); 
avgDelta5 = mean(Node5TimestampsFiltered); 
stdDev5 = std(Node5TimestampsFiltered); 
avgDelta6 = mean(Node6TimestampsFiltered); 
stdDev6 = std(Node6TimestampsFiltered); 
 
% Optionally, display results in seconds 
fprintf('Node 1: Avg = %.2f seconds, Std Dev = %.2f seconds\n', 
avgDelta1, stdDev1); 
fprintf('Node 2: Avg = %.2f seconds, Std Dev = %.2f seconds\n', 
avgDelta2, stdDev2); 
fprintf('Node 3: Avg = %.2f seconds, Std Dev = %.2f seconds\n', 
avgDelta3, stdDev3); 
fprintf('Node 4: Avg = %.2f seconds, Std Dev = %.2f seconds\n', 
avgDelta4, stdDev4); 
fprintf('Node 5: Avg = %.2f seconds, Std Dev = %.2f seconds\n', 
avgDelta5, stdDev5); 
fprintf('Node 6: Avg = %.2f seconds, Std Dev = %.2f seconds\n', 
avgDelta6, stdDev6); 
 
%% Make Table 
% Create vectors for the table 
Node = (1:6)'; 
AvgTime = [avgDelta1; avgDelta2; avgDelta3; avgDelta4; avgDelta5; 
avgDelta6]; 
StdDevTime = [stdDev1; stdDev2; stdDev3; stdDev4; stdDev5; stdDev6]; 
 
% Create the table 
timeStatsTable = table(Node, AvgTime, StdDevTime); 
 
% Display the table 
disp(timeStatsTable); 
 
writetable(timeStatsTable, 'timeStats.xlsx'); 
fprintf('Table written to "timeStats.xlsx"\n'); 
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